Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ivanovic, Marija

  • Google
  • 1
  • 6
  • 0

University of Belgrade

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Preparation and Characterization of Geopolymers Based on Metakaolin with the Addition of Organic Phase PVAcitations

Places of action

Chart of shared publication
Mirković, Miljana M.
1 / 16 shared
Kljajević, Ljiljana
1 / 6 shared
Knezevic, Sanja
1 / 2 shared
Nenadović, Snežana
1 / 5 shared
Nenadović, Miloš
1 / 8 shared
Radović, Ivona
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mirković, Miljana M.
  • Kljajević, Ljiljana
  • Knezevic, Sanja
  • Nenadović, Snežana
  • Nenadović, Miloš
  • Radović, Ivona
OrganizationsLocationPeople

article

Preparation and Characterization of Geopolymers Based on Metakaolin with the Addition of Organic Phase PVA

  • Mirković, Miljana M.
  • Kljajević, Ljiljana
  • Ivanovic, Marija
  • Knezevic, Sanja
  • Nenadović, Snežana
  • Nenadović, Miloš
  • Radović, Ivona
Abstract

<jats:p>Geopolymers have excellent physical and mechanical properties, so they can be used as a substitute for ordinary polymers. Geopolymers are ceramic materials, which exhibit the property of brittleness, which can be a limitation in some structural applications. To overcome this shortcoming, a new group of materials (organic geopolymers) was developed. The aim of this work is the synthesis of organic (hybrid) geopolymers. A geopolymer based on metakaolin was synthesized as a reference sample, while polyvinyl alcohol was added as an organic phase for synthesizing a hybrid geopolymer. It was concluded that the systems follow the rule of behavior in liquid systems. The chemical composition of the samples was determined by X-ray fluorescence analysis (XRF). Structural and phase characterization of hybrid and reference materials were analyzed using X-ray diffraction (XRD)and Fourier-transform infrared spectroscopy (FTIR), which revealed new phases in the PVA-added samples. The results show that the content of added PVA in the reaction mixture affects the phase composition of the synthesized materials. To examine the possibility of adsorption of the samples, Ultraviolet-visible spectroscopy (UV/VIS) was used. The morphology was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), where efflorescence was observed and identified. After characterizing the geopolymer with the addition of PVA, we obtained a material that was far more porous than the basic sample, and we can conclude that we have synthesized a material that shows good mechanical properties.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • alcohol
  • infrared spectroscopy
  • X-ray fluorescence spectroscopy