Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohan, G.

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Numerical Parametric Study and Design of Pultruded GFRP Composite Channel Columns4citations

Places of action

Chart of shared publication
Kathiresan, M.
1 / 2 shared
Anbarasu, M.
1 / 3 shared
Kasiviswanathan, M.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kathiresan, M.
  • Anbarasu, M.
  • Kasiviswanathan, M.
OrganizationsLocationPeople

article

Numerical Parametric Study and Design of Pultruded GFRP Composite Channel Columns

  • Mohan, G.
  • Kathiresan, M.
  • Anbarasu, M.
  • Kasiviswanathan, M.
Abstract

<jats:p>This article reports the finite element (FE) investigation of the axial capacities of pultruded fiber-reinforced polymer (PFRP) composite channel columns. The nonlinear finite element model (FEM) was developed by using the ABAQUS package for glass fiber-reinforced polymer (GFRP) composite channel columns, which included geometric and initial geometric imperfections. The developed FEMs were verified against an experimental result available in the literature for GFRP channel columns. The validated FEMs were used to carry out the parametric study comprising 61 FE models to investigate the effect of different geometries, plate slenderness and the length of members on the axial capacities of GFRP pultruded channel columns. The results obtained from the parametric study were used to examine the accuracy of the current Italian guidelines, American pre-standard and the Direct Strength Method (DSM) proposed in the literature for GFRP channel profiles. Based on the obtained results, the suitability of the current design guidelines is assessed and, also, a new set of design equations is proposed to estimate the axial capacity of the pultruded GFRP channel columns. The new proposed set of reliable design equations witnessed a less scattered and a high degree of accuracy in determining the axial load capacity of the pultruded GFRP composite channel columns.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • laser emission spectroscopy
  • strength
  • composite