People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, H. Elhosiny
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023The Role of Nanocrystallization for the Enhancement of Structural, Electrical, and Transport Properties of BaTiO3-V2O5-PbO Glassescitations
- 2023Finite Element Analysis of Novel Stiffened Angle Shear Connectors at Ambient and Elevated Temperature
- 2023Tunable emission glass ceramic nanocomposites via devitrification of glassy Na<sub>2</sub>O-GeO<sub>2</sub>-MnO<sub>2</sub> for optoelectronic and optical limiting applicationscitations
- 2022Optimization and Mechanical Characteristics of AA6061/Zirconia Nanocomposites Fabricated by Ultrasonic-Aided Stir Casting Methodcitations
Places of action
Organizations | Location | People |
---|
article
Finite Element Analysis of Novel Stiffened Angle Shear Connectors at Ambient and Elevated Temperature
Abstract
<p>This is a numerical study to investigate the behavior of novel stiffened angle shear connectors embedded in solid concrete slabs at both ambient and elevated temperatures. An advanced nonlinear finite element model is developed and validated with available experimental work by Nouri, K., et al. 2021. Additionally, parametric studies are performed to evaluate the variations in concrete strength and the connector’s dimensions. The results indicate that the ultimate strength of the stiffened angle shear connector drops by 92% in 1050 °C. Comparing studies show the strength of the stiffened shear connector at 700–850 °C is equivalent to the ordinary C-shaped shear connectors. The stiffened shear connector is more ductile at elevated temperatures as compared to ambient temperatures. The shear strength raised to 66% and 159.7% by increasing the height and width of the stiffened shear connector, respectively. Furthermore, the height of the stiffened shear connector is crucial to enhance the shear strength capacity as compared to the ordinary C-shaped shear connector.</p>