Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fang, Zhiyuan

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The Circular Economy of Steel Roofing and Cladding and Its Environmental Impacts—A Case Study for New Zealand5citations

Places of action

Chart of shared publication
Say, Vince
1 / 1 shared
Lim, James B. P.
1 / 9 shared
Dani, Aflah Alamsah
1 / 2 shared
Roy, Krishanu
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Say, Vince
  • Lim, James B. P.
  • Dani, Aflah Alamsah
  • Roy, Krishanu
OrganizationsLocationPeople

article

The Circular Economy of Steel Roofing and Cladding and Its Environmental Impacts—A Case Study for New Zealand

  • Say, Vince
  • Lim, James B. P.
  • Fang, Zhiyuan
  • Dani, Aflah Alamsah
  • Roy, Krishanu
Abstract

<jats:p>This paper investigates the environmental impacts of two commonly used steel roofing and wall-cladding products in New Zealand over their life cycle, taking into consideration the recycling process. The recycling process of steel is in line with the Circular Economy (CE) approach, where the goal is to prolong the material’s lifetime and possibly reduce its environmental impacts and material waste. Although the benefit of recycling steel is well recognised, the environmental impact values of different specific steel products cannot be generalised and need to be estimated. For this, life cycle assessment (LCA) methodology and Environmental Product Declaration (EPD) were implemented to quantify the environmental impacts of the investigated steel products and to analyse the significance of the recycling process in reducing the impacts on the environment. This study considered modules C1–C4 and D to estimate the impacts of steel products. It was found that the recycled steel materials have an effect on reducing the environmental impacts, particularly the global warming potential (GWP) and photochemical ozone creation potential (POCP), both of which were negative and of −2.36 × 106 kg CO2eq and −8.10 × 102 kg C2H4eq, respectively. However, it is important to note that not all impacts were reduced by recycling steel, which creates trade-offs within each impact indicator. In addition, when compared with locally sourced material cladding, the imported material cladding had a 6% higher negative impact value for both GWP and POCP.</jats:p>

Topics
  • impedance spectroscopy
  • steel