People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Böhm, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Multifunctionality Analysis of Structural Supercapacitors— A Reviewcitations
- 2023Fast generation of high-performance driveshafts: A digital approach to automated linked topology and design optimization
- 2023A Micromechanical Modeling Approach for the Estimation of the Weathering-Induced Degradation of Wind Turbine Bladescitations
- 2022Advanced carbon reinforced concrete technologies for façade elements of nearly zero-energy buildingscitations
- 2022Scale-up of aerogel manufacturing plant for industrial production
- 2022DMA of TPU films and the modelling of their viscoelastic properties for noise reduction in jet enginescitations
- 2022Life Cycle Assessment of Advanced Building Components towards NZEBscitations
- 2022An Experimental Approach for the Determination of the Mechanical Properties of Base-Excited Polymeric Specimens at Higher Frequency Modescitations
- 2020Determining the damage and failure behaviour of textile reinforced composites under combined in-plane and out-of-plane loadingcitations
- 2019Experimental and numerical determination of the local fiber volume content of unidirectional non-crimp fabrics with forming effectscitations
- 2018Phase-field modelling of fracture in heterogeneous materialscitations
- 2018Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fiberscitations
- 2017Probabilistically based defect analysis and structure-property-relations in CF
- 2017Materialmodelle für textilverstärkte Kunststoffe
- 2017Influence of out-of-plane compression induced damage effects on the mechanical properties of C/C
- 2016Thermal treatment of carbon fibres up to 2175 K and impact on carbon fibre and related polymer composite properties
- 2016Theoretical and experimental approaches for the determination of process-structure-property-relations in carbon fibres
- 2016Strain rate dependent deformation and damage behaviour of textile-reinforced thermoplastic composites
- 2013Metallgussverbundbauteil
- 2012Computer tomography-aided non-destructive and destructive testing in composite engineering
- 2008Numerical and experimental deformation and failure analysis of 3D-textile reinforced lightweight structures under impact loads
- 2006Analiza wytężenia kompozytowych elementów rurociągów
- 2005Damage and impact simulation of textile-reinforced composites using FEA
- 2005Manufacture and multiaxial test of composite tube specimens with braided glass fiber reinforcementcitations
Places of action
Organizations | Location | People |
---|
article
Life Cycle Assessment of Advanced Building Components towards NZEBs
Abstract
<jats:p>The building sector accounts for 40% of the total energy consumed in Europe at annual basis, together with the relevant Greenhouse Gas (GHG) emissions. In order to mitigate these impacts, the concept and establishment of the Nearly Zero Energy Buildings (NZEBs) is under continuous and intensive research. In fact, as the energy used for buildings’ operation becomes more efficient, impacts resulting from the buildings’ embodied energy become of more importance. Therefore, the selection of building materials and components is of high significance, as these affect the energy performance and potential environmental impacts of the building envelopes. The objective of this study is to perform a preliminary Life Cycle Assessment (LCA) on advanced multifunctional building components, aiming to achieve lower embodied emissions in NZEBs. The advanced components analyzed are composite panels for facade elements of building envelopes, providing thermal efficiency. The design of sustainable building envelope systems is expected to upgrade the overall environmental performance of buildings, including the NZEBs. The findings of this study constitute unambiguous evidence on the need for further research on this topic, as substantial lack of data concerning embodied impacts is presented in literature, adding to the growing discussion on NZEBs at a whole life cycle perspective across Europe. This research has shown that the electricity required from the manufacturing phase of the examined building components is the main contributor to climate change impact and the other environmental categories assessed. Sensitivity analysis that has been performed indicated that the climate change impact is highly depended on the electricity grid energy mix across Europe. Taking into account the current green energy transition by the increase of the renewable energy sources in electricity production, as well as the future upgrade of the manufacturing processes, it is expected that this climate change impact will be mitigated. Finally, the comparison between the CLC thermal insulator and other foam concretes in literature showed that the materials of the building components examined do not present any diversions in terms of environmental impact.</jats:p>