People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Obot, Ime B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Corrosion Inhibition of Rumex vesicarius Mediated Chitosan-AgNPs Composite for C1018 CS in CO2-Saturated 3.5% NaCl Medium under Static and Hydrodynamic Conditionscitations
- 2022Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solutioncitations
- 2021Date palm leaves extract as a green and sustainable corrosion inhibitor for low carbon steel in 15 wt.% HCl solutioncitations
- 2021Effect of intensifier additives on the performance of butanolic extract of date palm leaves against the corrosion of api 5l x60 carbon steel in 15 wt.% hcl solutioncitations
- 2020Preparation of silver/chitosan nanofluids using selected plant extractscitations
- 2020Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environmentcitations
- 2020Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plantscitations
- 2019Studies of the anticorrosion property of a newly synthesized Green isoxazolidine for API 5L X60 steel in acid environmentcitations
- 2018Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solutioncitations
- 2018Exploration of Dextran for Application as Corrosion Inhibitor for Steel in Strong Acid Environmentcitations
Places of action
Organizations | Location | People |
---|
article
Corrosion Inhibition of Rumex vesicarius Mediated Chitosan-AgNPs Composite for C1018 CS in CO2-Saturated 3.5% NaCl Medium under Static and Hydrodynamic Conditions
Abstract
<p>Rumex vesicarius (RVE) mediated chitosan–AgNPs composite was produced in situ by using an aqueous extract of Rumex vesicarius leaves as the reducing agent to reduce Ag<sup>+</sup> to Ag<sup>0</sup>. The synthesized composite was evaluated as a sweet (CO<sub>2</sub>) corrosion inhibitor (CI) for C1018 carbon steel (CS) in 3.5 wt% NaCl solution under static and hydrodynamic conditions. The corrosion inhibitive performance was evaluated using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization (PDP) techniques, as well as scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDAX), and atomic force microscopy (AFM) on corroded C1018 CS without and with additives. The effect of concentration, immersion time, temperature, and rotation speed on the CI performance of the composite was also investigated. The corrosion inhibitive effect increased with increasing composite dosage, with the highest inhibition efficiency (IE) acquired at the maximum composite dosage of 0.3%. Beyond this concentration, the IE decline with increasing concentration. Furthermore, IE was found to increase with immersion time and decline with a temperature rise from 25 to 40 °C, with the optimum temperature of 60 °C found to accelerate corrosion without and with RVE-mediated Chi–AgNPs composite. Under high shear stress, the Chi–AgNPs composite exhibits moderate corrosion inhibition under hydrodynamic conditions. The surface analysis results validate the formation of a protective covering due to composite adsorption on the CS surface. The RVE-mediated chitosan–AgNPs composite could be recommended as a CI for C1018 CS in sweet (CO<sub>2</sub>) corrosion environments at ambient temperature.</p>