People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soudagar, Manzoore Elahi M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Optimizing Friction Stir Processing Parameters for Aluminium Alloy 2024 Reinforced with SiC Particles: A Taguchi Approach of Investigation
- 2024Leverage of aluminium oxynitride on the impact resistance of Kevlar‐impregnated epoxy composites: Experimental and numerical evaluation under low‐velocity impactcitations
- 2024Physiochemical and electrical activities of nano copper oxides synthesised <i>via</i> hydrothermal method utilising natural reduction agents for solar cell applicationcitations
- 2024Mitigation of bio-corrosion characteristics of coronary artery stent by optimising fs-laser micromachining parameters
- 2024Mitigation of bio-corrosion characteristics of coronary artery stent by optimising fs-laser micromachining parameters
- 2023Influence of Layering Pattern, Fibre Architecture, and Alkalization on Physical, Mechanical, and Morphological Behaviour of Banana Fibre Epoxy Compositescitations
- 2023Influence of Layering Pattern, Fibre Architecture, and Alkalization on Physical, Mechanical, and Morphological Behaviour of Banana Fibre Epoxy Compositescitations
- 2023Study on Interfacial Interaction of Cement-Based Nanocomposite by Molecular Dynamic Analysis and an RVE Approachcitations
- 2023Analytical modeling and experimental estimation of the dynamic mechanical characteristics of green composite: <i>Caesalpinia decapetala</i> seed reinforcementcitations
- 2023Effect of Caesalpinia decapetala on the Dry Sliding Wear Behavior of Epoxy Compositescitations
- 2022Investigation of Various Coating Resins for Optimal Anticorrosion and Mechanical Properties of Mild Steel Surface in NaCl Solutioncitations
- 2022Investigation of Various Coating Resins for Optimal Anticorrosion and Mechanical Properties of Mild Steel Surface in NaCl Solutioncitations
- 2022Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder jointcitations
- 2022Diesel Spray: Development of Spray in Diesel Enginecitations
- 2021Neural Network-Based Prediction Model to Investigate the Influence of Temperature and Moisture on Vibration Characteristics of Skew Laminated Composite Sandwich Platescitations
- 2020Biodegradable carboxymethyl cellulose based material for sustainable packaging applicationcitations
Places of action
Organizations | Location | People |
---|
article
Diesel Spray: Development of Spray in Diesel Engine
Abstract
<jats:p>Research and development in the internal combustion engine (ICE) has been growing progressively. Issues such as air pollution, fuel cost, and market competitiveness have driven the automotive industry to develop and manufacture automobiles that meet new regulation and customers’ needs. The diesel engine has some advantages over the gasoline or spark ignition engine, including higher engine efficiency, greater power output, as well as reliability. Since the early stage of the diesel engine’s development phase, the quest to obtain better atomization, proper fuel supply, and accurate timing control, have triggered numerous innovations. In the last two decades, owing to the development of optical technology, the visualization of spray atomization has been made possible using visual diagnostics techniques. This advancement has greatly improved research in spray evolution. Yet, a more comprehensive understanding related to these aspects has not yet been agreed upon. Diesel spray, in particular, is considered a complicated phenomenon to observe because of its high-speed, high pressure, as well as its high temperature working condition. Nevertheless, several mechanisms have been successfully explained using fundamental studies, providing several suggestions in the area, such as liquid atomization and two-phase spray flow. There are still many aspects that have not yet been agreed upon. This paper comprehensively reviews the current status of theoretical diesel spray and modelling, including some important numerical and experimental aspects.</jats:p>