Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuan, Qiupeng

  • Google
  • 1
  • 6
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Application of Machine Learning and Multivariate Statistics to Predict Uniaxial Compressive Strength and Static Young’s Modulus Using Physical Properties under Different Thermal Conditions36citations

Places of action

Chart of shared publication
Cao, Kewang
1 / 2 shared
Emad, Muhammad Zaka
1 / 1 shared
Rehman, Hafeezur
1 / 2 shared
Khan, Sajid
1 / 2 shared
Ullah, Barkat
1 / 3 shared
Hashim, Mohd Hazizan Bin Mohd
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Cao, Kewang
  • Emad, Muhammad Zaka
  • Rehman, Hafeezur
  • Khan, Sajid
  • Ullah, Barkat
  • Hashim, Mohd Hazizan Bin Mohd
OrganizationsLocationPeople

article

Application of Machine Learning and Multivariate Statistics to Predict Uniaxial Compressive Strength and Static Young’s Modulus Using Physical Properties under Different Thermal Conditions

  • Cao, Kewang
  • Emad, Muhammad Zaka
  • Rehman, Hafeezur
  • Khan, Sajid
  • Ullah, Barkat
  • Yuan, Qiupeng
  • Hashim, Mohd Hazizan Bin Mohd
Abstract

<jats:p>Uniaxial compressive strength (UCS) and the static Young’s modulus (Es) are fundamental parameters for the effective design of engineering structures in a rock mass environment. Determining these two parameters in the laboratory is time-consuming and costly, and the results may be inappropriate if the testing process is not properly executed. Therefore, most researchers prefer alternative methods to estimate these two parameters. This work evaluates the thermal effect on the physical, chemical, and mechanical properties of marble rock, and proposes a prediction model for UCS and ES using multi-linear regression (MLR), artificial neural networks (ANNs), random forest (RF), and k-nearest neighbor. The temperature (T), P-wave velocity (PV), porosity (η), density (ρ), and dynamic Young’s modulus (Ed) were taken as input variables for the development of predictive models based on MLR, ANN, RF, and KNN. Moreover, the performance of the developed models was evaluated using the coefficient of determination (R2) and mean square error (MSE). The thermal effect results unveiled that, with increasing temperature, the UCS, ES, PV, and density decrease while the porosity increases. Furthermore, ES and UCS prediction models have an R2 of 0.81 and 0.90 for MLR, respectively, and 0.85 and 0.95 for ANNs, respectively, while KNN and RF have given the R2 value of 0.94 and 0.97 for both ES and UCS. It is observed from the statistical analysis that P-waves and temperature show a strong correlation under the thermal effect in the prediction model of UCS and ES. Based on predictive performance, the RF model is proposed as the best model for predicting UCS and ES under thermal conditions.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • strength
  • random
  • porosity
  • machine learning