Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uzoma, Ifeanyi E.

  • Google
  • 1
  • 2
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Aspartame as a Green and Effective Corrosion Inhibitor for T95 Carbon Steel in 15 wt.% HCl Solution15citations

Places of action

Chart of shared publication
Umoren, Saviour A.
1 / 40 shared
Loto, Roland T.
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Umoren, Saviour A.
  • Loto, Roland T.
OrganizationsLocationPeople

article

Aspartame as a Green and Effective Corrosion Inhibitor for T95 Carbon Steel in 15 wt.% HCl Solution

  • Uzoma, Ifeanyi E.
  • Umoren, Saviour A.
  • Loto, Roland T.
Abstract

<p>Oil well acidizing, although a stimulation process, induces the corrosion of metallic equipment and well tubing. There is, at present, a high demand for effective and less toxic hightemperature corrosion inhibitors for the acidizing process due to the failing of the existing inhibitors at high temperatures occasioned by increases in the well depths. In this study, aspartame (ASP), a commercially available natural compound, is examined as a corrosion inhibitor for T95 carbon steel in 15 wt.% HCl solution at 60, 70, 80, and 90<sup>◦</sup> C using the weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), and optical profilometry (OP) techniques. It was found that ASP possesses a corrosion inhibiting effect at the studied conditions. Inhibition efficiency increased with increases in temperature. With 2000 ppm ASP, inhibition efficiency of 86% was achieved from the weight loss method at 90<sup>◦</sup> C after 4 h of immersion. Results from the electrochemical techniques are in good agreement with the weight loss results. PDP results reveal that ASP acted as a mixedtype corrosion inhibitor under the investigated conditions. The inhibition ability of ASP is due to adsorption on the steel surface and has been confirmed by the SEM, OP, and EDX results. ASP is a promising active compound for the formulation of acidizing corrosion inhibitors.</p>

Topics
  • surface
  • compound
  • Carbon
  • corrosion
  • scanning electron microscopy
  • laser emission spectroscopy
  • steel
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • profilometry