Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nunes Sales Barreto, Gabriela

  • Google
  • 1
  • 6
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Comparison between Synthetic and Biodegradable Polymer Matrices on the Development of Quartzite Waste-Based Artificial Stone24citations

Places of action

Chart of shared publication
Monteiro, Sérgio Neves
1 / 4 shared
Carvalho, Elaine Aparecida Santos
1 / 1 shared
Azevedo, Afonso
1 / 2 shared
Vieira, Carlos Maurício Fontes
1 / 4 shared
Barreto, Gabriela Nunes Sales
1 / 1 shared
Gadioli, Monica Castoldi Borlini
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Monteiro, Sérgio Neves
  • Carvalho, Elaine Aparecida Santos
  • Azevedo, Afonso
  • Vieira, Carlos Maurício Fontes
  • Barreto, Gabriela Nunes Sales
  • Gadioli, Monica Castoldi Borlini
OrganizationsLocationPeople

article

Comparison between Synthetic and Biodegradable Polymer Matrices on the Development of Quartzite Waste-Based Artificial Stone

  • Nunes Sales Barreto, Gabriela
  • Monteiro, Sérgio Neves
  • Carvalho, Elaine Aparecida Santos
  • Azevedo, Afonso
  • Vieira, Carlos Maurício Fontes
  • Barreto, Gabriela Nunes Sales
  • Gadioli, Monica Castoldi Borlini
Abstract

<jats:p>The development of artificial stone from the agglutination of polymeric resin using industrial wastes can be a viable alternative from a technical, economic, and sustainable point of view. The main objective of the present work was to evaluate the physical, mechanical, and structural properties of artificial stones based on quartzite waste added into a synthetic, epoxy, or biodegradable polyurethane polymer matrix. Artificial stone plates were produced through the vacuum vibration and compression method, using 85 wt% of quartzite waste. The material was manufactured under the following conditions: 3 MPa compaction pressure and 90 and 80 °C curing temperature. The samples were characterized to evaluate physical and mechanical parameters and microstructure properties. As a result, the artificial stone plates developed obtained ≤0.16% water absorption, ≤0.38% porosity, and 26.96 and 10.7 MPa flexural strength (epoxy and polyurethane resin, respectively). A wear test established both artificial quartzite stone with epoxy resin (AS-EP) and vegetable polyurethane resin (AS-PU) high traffic materials. Hard body impact resistance classified AS-EP as a low height material and AS-PU as a very high height material. The petrographic slides analysis revealed that AS-EP has the best load distribution. We concluded the feasibility of manufacturing artificial stone, which would minimize the environmental impacts that would be caused by this waste disposal. We concluded that the production of artificial rock shows the potential and that it also helps to reduce environmental impacts.</jats:p>

Topics
  • polymer
  • wear test
  • strength
  • flexural strength
  • porosity
  • resin
  • curing