Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Patel, Kartik

  • Google
  • 1
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens)23citations

Places of action

Chart of shared publication
Badraoui, Riadh
1 / 6 shared
Yadav, Dharmendra Kumar
1 / 4 shared
Patel, Dr. Mitesh
1 / 1 shared
Alshammari, Nawaf
1 / 1 shared
Elasbali, Abdelbaset Mohamed
1 / 1 shared
Al-Keridis, Lamya Ahmed
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Badraoui, Riadh
  • Yadav, Dharmendra Kumar
  • Patel, Dr. Mitesh
  • Alshammari, Nawaf
  • Elasbali, Abdelbaset Mohamed
  • Al-Keridis, Lamya Ahmed
OrganizationsLocationPeople

article

Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens)

  • Badraoui, Riadh
  • Yadav, Dharmendra Kumar
  • Patel, Kartik
  • Patel, Dr. Mitesh
  • Alshammari, Nawaf
  • Elasbali, Abdelbaset Mohamed
  • Al-Keridis, Lamya Ahmed
Abstract

<jats:p>The remediation of potentially toxic element-polluted soils can be accomplished through the use of microbial and plant-assisted bioremediation. A total of 32 bacteria were isolated from soil samples contaminated with potentially toxic elements. The isolated bacterial strain DG-20 showed high tolerance to cadmium (up to 18 mM) and also showed bioaccumulative Cd removal properties, as demonstrated by atomic absorption spectroscopy studies. By sequencing the 16S rRNA gene, this strain was identified as Curtobacterium oceanosedimentum. Under stress and normal conditions, isolate DG-20 also produced a wide range of plant growth promoting traits, including ammonia production (51–73 µg/mL) and IAA production (116–183 µg/mL), alongside siderophore production and phosphate solubilization. Additionally, pot experiments were conducted to determine whether the strain could promote Chili growth when Cd salts are present. Over the control, bacterial colonization increased root and shoot lengths significantly up to 58% and 60%, respectively. Following inoculation with the Cd-tolerant strain, the plants also increased in both fresh and dry weight. In both the control and inoculated plants, Cd was accumulated more in roots than in shoots, indicating that Chili was phytostabilizing Cd levels. Besides improving the plant attributes, Cd-tolerant bacteria were also found to increase the amount of total chlorophyll, proline, total phenol, and ascorbic acid in the soil when added to the soil. These results suggest that the inoculant provides protection to plants from negative effects. The results of the present study predict that the combined properties of the tested strain in terms of Cd tolerance and plant growth promotion can be exploited for the purpose of the bioremediation of Cd, and for the improvement of Chili cultivation in soils contaminated with Cd.</jats:p>

Topics
  • experiment
  • spectroscopy
  • Cadmium