Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maia, Lino

  • Google
  • 3
  • 6
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Comparison of outlier detection approaches for compressive strength of cement-based mortars2citations
  • 2022Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials13citations
  • 2008Hydration of Portoguese cements, measurement and modelling of chemical shrinkagecitations

Places of action

Chart of shared publication
Matos, Ana Mafalda
1 / 9 shared
Cangussu, Nara
1 / 1 shared
Aslani, Farhad
1 / 71 shared
Oliveira, Paula Milheiro De
1 / 1 shared
Geiker, Mette Rica
1 / 40 shared
Figueiras, Joaquim A.
1 / 1 shared
Chart of publication period
2024
2022
2008

Co-Authors (by relevance)

  • Matos, Ana Mafalda
  • Cangussu, Nara
  • Aslani, Farhad
  • Oliveira, Paula Milheiro De
  • Geiker, Mette Rica
  • Figueiras, Joaquim A.
OrganizationsLocationPeople

article

Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials

  • Maia, Lino
Abstract

<jats:p>The development of printers and materials for 3D Printing Construction during the last two decades has allowed the construction of increasingly complex projects. Some of them have broken construction speed records due to the simplification of the construction process, particularly in non-standard geometries. However, for performance and security reasons the materials used had considerable amounts of Portland cement (PC), a constituent that increases the cost and environmental impact of 3D Printable Materials (3DPM). Supplementary Cement Materials (SCM), such as fly ash, silica fume and metakaolin, have been considered a good solution to partially replace PC. This work aims to study the inclusion of limestone filler, fly ash and metakaolin as SCM in 3DPM. Firstly, a brief literature review was made to understand how these SCM can improve the materials’ 3DP capacity, and which methods are used to evaluate them. Based on the literature review, a laboratory methodology is proposed to assess 3DP properties, where tests such as slump and flow table are suggested. The influence of each SCM is evaluated by performing all tests on mortars with different dosages of each SCM. Finally, a mechanical extruder is used to extrude the developed mortars, which allowed us to compare the results of slump and flow table tests with the quality of extruded samples.</jats:p>

Topics
  • impedance spectroscopy
  • inclusion
  • cement