Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kozma, Gábor

  • Google
  • 2
  • 4
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt39citations
  • 2020Mechanochemistry for catalysis: preparation of perovskite structural materials and mixtures of metal oxidescitations

Places of action

Chart of shared publication
Marey, Heba
1 / 1 shared
Szabó, György
1 / 2 shared
Kukovecz, Ákos
1 / 8 shared
Kónya, Zoltán
1 / 11 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Marey, Heba
  • Szabó, György
  • Kukovecz, Ákos
  • Kónya, Zoltán
OrganizationsLocationPeople

article

Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt

  • Marey, Heba
  • Kozma, Gábor
  • Szabó, György
Abstract

<jats:p>Increasing the rate of construction material consumption has caused significant environmental problems in recent decades, especially the production of ordinary Portland cement (OPC), which has been associated with 8% of the world’s human CO2 emissions and is considered the leading binder of concrete. This study aims to investigate the effects of substituting conventional concrete (CC) material with green concrete (GC) in the non-structural concrete works of a residential building in New Borg El-Arab City, Egypt. It attempts to establish what the effects are of using GC on cement, natural aggregates, and CO2 emissions in the design phase. By using a design-based solution (DBS), we began with redesign, reduce, reselect, reuse, and recycle strategies to find an optimal solution for applying recycle aggregate concrete (RAC) as a replacement material in selected building parts, such as the internal floor, external sidewalk, entrance steps, and wall boundary. AutoCAD software and 3Dmax were used to modify the original design and obtain two design references with four different scenarios. Comparative analyses were applied to investigate the effects of different concrete materials. The results show a reduction of about 19.4% in cement consumption in terms of the total concrete of the building and a 44.5% reduction in CO2 emissions due to the reduction of cement in specific building parts. In addition, this solution decreased natural coarse aggregate (NCA) consumption by 23.7% in the final concrete. This study recommends that GC materials close the loop of cementitious material consumption to reduce environmental impacts and achieve sustainability in the Egyptian building sector.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • cement
  • gas chromatography