People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tariq, Muhammad Atiq Ur Rehman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022GIS-based assessment of selective heavy metals and stable carbon isotopes in groundwater of Islamabad and Rawalpindi, Pakistancitations
- 2022An Investigation of Mechanical Properties of Concrete by Applying Sand Coating on Recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) Used as a Partial Replacement of Natural Coarse Aggregatescitations
- 2022Evolutionary Algorithm-Based Modeling of Split Tensile Strength of Foundry Sand-Based Concretecitations
- 2022Development of an analytical model for the FRP retrofitted deficient interior reinforced concrete beam-column jointscitations
- 2022Prediction of Bidirectional Shear Strength of Rectangular RC Columns Subjected to Multidirectional Earthquake Actions for Collapse Preventioncitations
Places of action
Organizations | Location | People |
---|
article
Evolutionary Algorithm-Based Modeling of Split Tensile Strength of Foundry Sand-Based Concrete
Abstract
<p>Foundry sand (FS) is produced as a waste material by metal casting foundries. It is being utilized as an alternative to fine aggregates for developing sustainable concrete. In this paper, an artificial intelligence technique, i.e., gene expression programming (GEP) has been implemented to empirically formulate prediction models for split tensile strength (ST) of concrete containing FS. For this purpose, an extensive experimental database has been collated from the literature and split up into training, validation, and testing sets for modeling purposes. ST is modeled as a function of water-to-cement ratio, percentage of FS, and FS-to-cement content ratio. The reliability of the proposed expression is validated by conducting several statistical and parametric analyses. The modeling results depicted that the prediction model is robust and accurate with a high generalization capability. The availability of reliable formulation to predict strength properties can promote the utilization of foundry industry waste in the construction sector, promoting green construction and saving time and cost incurred during experimental testing.</p>