Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karaki, Hassan

  • Google
  • 1
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Digitalization Platform for Mechanistic Modeling of Battery Cell Production8citations

Places of action

Chart of shared publication
Schröder, Daniel
1 / 4 shared
Schmidt, Oke
1 / 3 shared
Herrmann, Christoph
1 / 31 shared
Kwade, Arno
1 / 20 shared
Krewer, Ulrike
1 / 13 shared
Lippke, Mark
1 / 2 shared
Silva, Gabriela Ventura
1 / 2 shared
Thomitzek, Matthias
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Schröder, Daniel
  • Schmidt, Oke
  • Herrmann, Christoph
  • Kwade, Arno
  • Krewer, Ulrike
  • Lippke, Mark
  • Silva, Gabriela Ventura
  • Thomitzek, Matthias
OrganizationsLocationPeople

article

Digitalization Platform for Mechanistic Modeling of Battery Cell Production

  • Schröder, Daniel
  • Schmidt, Oke
  • Herrmann, Christoph
  • Kwade, Arno
  • Krewer, Ulrike
  • Karaki, Hassan
  • Lippke, Mark
  • Silva, Gabriela Ventura
  • Thomitzek, Matthias
Abstract

<jats:p>The application of batteries in electric vehicles and stationary energy-storage systems is widely seen as a promising enabler for a sustainable mobility and for the energy sector. Although significant improvements have been achieved in the last decade in terms of higher battery performance and lower production costs, there remains high potential to be tapped, especially along the battery production chain. However, the battery production process is highly complex due to numerous process–structure and structure–performance relationships along the process chain, many of which are not yet fully understood. In order to move away from expensive trial-and-error operations of production lines, a methodology is needed to provide knowledge-based decision support to improve the quality and throughput of battery production. In the present work, a framework is presented that combines a process chain model and a battery cell model to quantitatively predict the impact of processes on the final battery cell performance. The framework enables coupling of diverse mechanistic models for the individual processes and the battery cell in a generic container platform, ultimately providing a digital representation of a battery electrode and cell production line that allows optimal production settings to be identified in silico. The framework can be implemented as part of a cyber-physical production system to provide decision support and ultimately control of the production line, thus increasing the efficiency of the entire battery cell production process.</jats:p>

Topics
  • impedance spectroscopy
  • mobility