People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skevi, Lorena
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022The Effect of Bacteria on Early Age Strength of CEM I and CEM II Cementitious Compositescitations
- 2022Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonationcitations
- 2021Incorporation of bacteria in concrete: the case against MICP as a means for strength improvementcitations
- 2021Using bacteria for early-age strength improvement of concrete
- 2019Electrodialytically treated MSWI fly ash use in clay bricks
Places of action
Organizations | Location | People |
---|
article
The Effect of Bacteria on Early Age Strength of CEM I and CEM II Cementitious Composites
Abstract
<jats:p>Despite being associated with lower carbon emissions, CEM II cementitious materials exhibit reduced early age strength compared to that of CEM I. Several studies have demonstrated early age strength improvements by incorporating bacterial cells in concrete. In this study, live vegetative bacteria and dead bacteria killed in two different ways were used to explore whether changes in strength are related to the bacteria’s viability or their surface morphology. Compressive and flexural strength tests were performed at mortars with and without bacteria for both CEM I and CEM II cement. Their microstructure, porosity and mineralogy were also examined. No net strength gain was recorded for either CEM I or CEM II bacterial mortars compared to non-bacterial controls, although changes in the porosity were reported. It is proposed that two phenomena, one causing strength-reduction and one causing strength-gain, took place in the bacterial specimens, simultaneously. It is suggested that each phenomenon is dependent on the alkalinity of the cement matrix, which differs between CEM I and CEM II mortars at early age. Nevertheless, in neither case could it be recommended that the addition of bacteria is an effective way of increasing the early age strength of mortars.</jats:p>