People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benzerzour, Mahfoud
IMT Nord Europe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024A novel approach based on microstructural modeling and a multi-scale model to predicting the mechanical-elastic properties of cement pastecitations
- 2024Advancements in Heavy Metal Stabilization
- 2023Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye’elimite Contentcitations
- 2023Development of Flash-Calcined Sediment and Blast Furnace Slag Ternary Binderscitations
- 2022The Use of Callovo-Oxfordian Argillite as a Raw Material for Portland Cement Clinker Productioncitations
- 2022Flash calcined sediment used in the CEM III cement production and the potential production of hydraulic binder for the road construction – Part I: Characterization of CEM III cements
- 2022Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Networkcitations
- 2022Recycling of Flash-Calcined Dredged Sediment for Concrete 3D Printingcitations
- 2022Effect of flash-calcined sediment substitution in sulfoaluminate cement mortarcitations
- 2022Compressed Earth Blocks Using Sediments and Alkali-Activated Byproductscitations
- 2022The Pozzolanic Activity of Sediments Treated by the Flash Calcination Methodcitations
- 2022High performance mortar using flash calcined materials
- 2022Reuse of treated wastewater and non-potable groundwater in the manufacture of concrete: major challenge of environmental preservationcitations
- 2022Designing Efficient Flash-Calcined Sediment-Based Ecobinderscitations
- 2021Evaluation of the Mechanical and Environmental Properties of Self-Compacting Mortars with Raw Harbour Dredging Sediments (SCMs)
- 2021Manufacturing of Low-Carbon Binders Using Waste Glass and Dredged Sediments: Formulation and Performance Assessment at Laboratory Scalecitations
- 2021From dredged sediment to supplementary cementitious material: characterization, treatment, and reusecitations
- 2021Influence of fine sediments on rheology properties of self-compacting concretescitations
- 2018Durability of a cementitious matrix based on treated sedimentscitations
- 2018Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cementcitations
- 2012Experimental Results of Polyester/Glass Fibers – Cementitious Matrix Bond Characteristics: Effect of Silane on Fiberscitations
Places of action
Organizations | Location | People |
---|
article
Manufacturing of Low-Carbon Binders Using Waste Glass and Dredged Sediments: Formulation and Performance Assessment at Laboratory Scale
Abstract
International audience ; Few studies focus on the co-valorization of river dredging sediments (DS) and residual waste glass (RWG) in alkali-activated binders. This study investigates the use of DS as an aluminosilicate source by substituting a natural resource (metakaolin (MK)), while using RWG as an activator (sodium silicate source). Suitable treatments are selected to increase the potential reactivity of each residue. The DS is thermally treated at 750 °C to promote limestone and aluminosilicate clays’ activation. The RWG (amorphous, rich in silicon, and containing sodium) is used as an alkaline activator after treatment in 10 M NaOH. Structural monitoring using nuclear magnetic resonance (29NMR and 27NMR), X-ray diffraction, and leaching is conducted to achieve processing optimization. In the second stage, mortars were prepared and characterized by determining compressive strength, water absorption, mercury porosimetry and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS). Results obtained show the great advantage of combining RWG and DS in an alkali-activation binder. The treated RWG offers advantages when used as sodium silicate activating solution, while the substitution of MK by calcined sediments (DS-750 °C) at 10%, 20%, and 30% leads to improvements in the properties of the matrix such as an increase in compressive strength and a refinement and reduction of the pore size within the matrix.