Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kandemir, Ali

  • Google
  • 4
  • 10
  • 222

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Developing aligned discontinuous flax fibre composites32citations
  • 2022Developing aligned discontinuous flax fibre composites:Sustainable matrix selection and repair performance of vitrimers32citations
  • 2021A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery83citations
  • 2020Characterisation of natural fibres for sustainable discontinuous fibre composite materials75citations

Places of action

Chart of shared publication
Longana, Marco Luigi
3 / 24 shared
Eichhorn, Stephen J.
3 / 45 shared
Hamerton, Ian
4 / 113 shared
Longana, Marco L.
1 / 7 shared
Proud, Will
1 / 1 shared
Trask, Rs
1 / 56 shared
Murphy, Richard J.
1 / 3 shared
Fitzgerald, Amy
1 / 1 shared
Jesson, David A.
1 / 2 shared
Pozegic, Tr
1 / 9 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Longana, Marco Luigi
  • Eichhorn, Stephen J.
  • Hamerton, Ian
  • Longana, Marco L.
  • Proud, Will
  • Trask, Rs
  • Murphy, Richard J.
  • Fitzgerald, Amy
  • Jesson, David A.
  • Pozegic, Tr
OrganizationsLocationPeople

article

A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery

  • Longana, Marco Luigi
  • Proud, Will
  • Trask, Rs
  • Murphy, Richard J.
  • Fitzgerald, Amy
  • Jesson, David A.
  • Hamerton, Ian
  • Kandemir, Ali
Abstract

Composite materials, such as carbon fibre reinforced epoxies, provide more efficient structures than conventional materials through light-weighting, but the associated high energy demand during production can be extremely detrimental to the environment. Biocomposites are an emerging material class with the potential to reduce a product’s through-life environmental impact relative to wholly synthetic composites. As with most materials, there are challenges and opportunities with the adoption of biocomposites at the each stage of the life cycle. Life Cycle Engineering is a readily available tool enabling the qualification of a product’s performance, and environmental and financial impact, which can be incorporated in the conceptual development phase. Designers and engineers are beginning to actively include the environment in their workflow, allowing them to play a significant role in future sustainability strategies. This review will introduce Life Cycle Engineering and outline how the concept can offer support in the Design for the Environment, followed by a discussion of the advantages and disadvantages of biocomposites throughout their life cycle.

Topics
  • impedance spectroscopy
  • Carbon
  • phase
  • composite