Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kurbanova, Aliya

  • Google
  • 1
  • 4
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Magnetic Fe3O4-Ag0 nanocomposites for effective mercury removal from water21citations

Places of action

Chart of shared publication
Zorpas, Antonis A.
1 / 2 shared
Molkenova, Anara
1 / 1 shared
Atabaev, Timur Sh
1 / 1 shared
Inglezakis, Vassilis J.
1 / 27 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zorpas, Antonis A.
  • Molkenova, Anara
  • Atabaev, Timur Sh
  • Inglezakis, Vassilis J.
OrganizationsLocationPeople

article

Magnetic Fe3O4-Ag0 nanocomposites for effective mercury removal from water

  • Kurbanova, Aliya
  • Zorpas, Antonis A.
  • Molkenova, Anara
  • Atabaev, Timur Sh
  • Inglezakis, Vassilis J.
Abstract

<p>In this study, magnetic Fe<sub>3</sub>O<sub>4</sub> particles and Fe<sub>3</sub>O<sub>4</sub>-Ag<sup>0</sup> nanocomposites were prepared by a facile and green method, fully characterized and used for the removal of Hg<sup>2+</sup> from water. Characterizations showed that the Fe<sub>3</sub>O<sub>4</sub> particles are quasi-spherical with an average diameter of 217 nm and metallic silver nanoparticles formed on the surface with a size of 23-41 nm. The initial Hg<sup>2+</sup> removal rate was very fast followed by a slow increase and the maximum solid phase loading was 71.3 mg/g for the Fe<sub>3</sub>O<sub>4</sub>-Ag0 and 28 mg/g for the bare Fe<sub>3</sub>O<sub>4</sub>. The removal mechanism is complex, involving Hg<sup>2+</sup> adsorption and reduction, Fe2+ and Ag0 oxidation accompanied with reactions of Cl<sup>-</sup> with Hg<sup>+</sup> and Ag<sup>+</sup>. The facile and green synthesis process, the fast kinetics and high removal capacity and the possibility of magnetic separation make Fe<sub>3</sub>O<sub>4</sub>-Ag<sup>0</sup> nanocomposites attractive materials for the removal of Hg<sup>2+</sup> from water</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • silver
  • phase
  • Mercury