Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bjørgård, Trine Larsen

  • Google
  • 1
  • 7
  • 19

Aalborg University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Development of an eco-sustainable solution for the second life of decommissioned oil and gas platforms19citations

Places of action

Chart of shared publication
Vicinanza, Diego
1 / 1 shared
Dellanno, Antonio
1 / 1 shared
Lanfredi, Caterina
1 / 1 shared
Contestabile, Pasquale
1 / 1 shared
Colaleo, Giuseppina
1 / 1 shared
Margheritini, Lucia
1 / 4 shared
Simonsen, Morten Enggrob
1 / 15 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Vicinanza, Diego
  • Dellanno, Antonio
  • Lanfredi, Caterina
  • Contestabile, Pasquale
  • Colaleo, Giuseppina
  • Margheritini, Lucia
  • Simonsen, Morten Enggrob
OrganizationsLocationPeople

article

Development of an eco-sustainable solution for the second life of decommissioned oil and gas platforms

  • Vicinanza, Diego
  • Dellanno, Antonio
  • Lanfredi, Caterina
  • Contestabile, Pasquale
  • Bjørgård, Trine Larsen
  • Colaleo, Giuseppina
  • Margheritini, Lucia
  • Simonsen, Morten Enggrob
Abstract

With the approaching end of the productive lives of offshore oil and gas platforms, the issue about decommissioning and what to do with existing structures arises. In this regard, this study aims to test solutions, at a preliminary level, for the eco-sustainable reuse of platforms at the end of their extraction phase. In particular, mineral accretion technology is applied by low-voltage electrolysis of seawater due to the precipitation of calcium carbonate on a cathode material in order to assess the protection capacity of the platforms against corrosion. This approach allows the extension of a platform’s “life” under a more sustainable purpose. The results, derived from laboratory and field experiments, will allow us to reduce uncertainties and define the best operating conditions to increase the efficiency of the mineral accretion technology in the marine ecosystem. The data collection on the main parameters that influence the process (i.e., temperature, salinity, and applied current) and the quantitative analysis of the collected material allowed us to acquire a better knowledge about mineral composition and deposition rate.

Topics
  • Deposition
  • impedance spectroscopy
  • mineral
  • corrosion
  • phase
  • experiment
  • extraction
  • precipitation
  • Calcium
  • quantitative determination method