People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ke, Xinyuan
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2023Carbonation Rate of Alkali-Activated Concretes
- 2023RILEM TC 281-CCC Working Group 6
- 2023Development and characterisation of an alginate and expanded graphite based composite for thermochemical heat storagecitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2022Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonationcitations
- 2022Carbonation rate of alkali-activated concretes and high-volume SCM concretescitations
- 2021Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cementscitations
- 2020Incorporation of strontium and calcium in geopolymer gelscitations
- 2019Layered double hydroxides modify the reaction of sodium silicate-activated slag cementscitations
- 2018Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cementscitations
- 2018Metakaolin-based geopolymers for nuclear waste encapsulationcitations
- 2017Alternative inorganic binders based on alkali-activated metallurgical slagscitations
- 2017Characterization of supplementary cementitious materials by thermal analysiscitations
Places of action
Organizations | Location | People |
---|
article
Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements
Abstract
The reaction kinetics of four commercial ground granulated blast furnace slags with varying percentages of MgO (6 to 14 wt.%), activated with four different doses of sodium metasilicate, were evaluated using isothermal calorimetry. The reaction kinetics were strongly dependent on the dose of the alkaline activator used, and the chemical and physical properties of the slag. When using low concentrations of sodium metasilicate as an activator, the MgO content in the slag influences the kinetics of the reaction, while the CaO content plays a more significant role when the concentration of metasilicate is increased. This study elucidated a close relationship between the dose of the alkali-activator and the chemistry of the slag used, although it was not possible to identify a clear correlation between any of the published chemically-based “slag quality moduli” and the calorimetry results, highlighting the complexity of blast furnace slag glass chemistry, and the importance of the physical properties of the slag in defining its reactivity.