Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamd, Ahmed

  • Google
  • 2
  • 11
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater11citations
  • 2022Polyaniline/Glauconite Nanocomposite Adsorbent for Congo Red Dye from Textile Wastewater10citations

Places of action

Chart of shared publication
Al-Ghamdi, Azza
1 / 1 shared
Alshabanat, Mashael N.
1 / 1 shared
Al-Senani, Ghadah M.
1 / 2 shared
Soliman, N. K.
1 / 1 shared
El-Sayed, Refat
1 / 1 shared
Ahmed, Sayed A.
2 / 3 shared
Dryaz, Asmaa Ragab
1 / 1 shared
Shaban, Mohamed
2 / 5 shared
Salah, Doaa
1 / 1 shared
Elzanaty, Ali M.
1 / 1 shared
Alanazi, Abdulaziz M.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Al-Ghamdi, Azza
  • Alshabanat, Mashael N.
  • Al-Senani, Ghadah M.
  • Soliman, N. K.
  • El-Sayed, Refat
  • Ahmed, Sayed A.
  • Dryaz, Asmaa Ragab
  • Shaban, Mohamed
  • Salah, Doaa
  • Elzanaty, Ali M.
  • Alanazi, Abdulaziz M.
OrganizationsLocationPeople

article

Polyaniline/Glauconite Nanocomposite Adsorbent for Congo Red Dye from Textile Wastewater

  • Salah, Doaa
  • Hamd, Ahmed
  • Elzanaty, Ali M.
  • Alanazi, Abdulaziz M.
  • Ahmed, Sayed A.
  • Shaban, Mohamed
Abstract

<jats:p>Glauconite (Gl), a naturally occurring clay material, was utilized as an affordable and ecologically friendly adsorbent to explore its capturing capacity towards Congo red (CR) dye from textile industrial waste effluent. To improve adsorption and removal effectiveness, a modification technique utilizing polyaniline (PAN) was investigated. An X-ray diffractometer (XRD), a scanning electron microscope (SEM), and Fourier transformer infrared (FTI-R) were applied as strong familiar characterization techniques for all used adsorbents. The effects of starting concentration, contact duration, adsorbent dose, pH, and temperature on the adsorption process were also studied. The reusability of the adsorbent was studied over four adsorption cycles. The results show that PAN modification of Gl enhances the effectiveness of CR elimination. The clearance efficiency of raw and modified glauconite at 25 °C and pH 7 was 77% and 91%, respectively. The kinetics and isotherms of Congo red dye adsorption were investigated using batch studies to determine the impacts of various experimental conditions. The maximum adsorption capacity of the glauconite/polyaniline (Gl/PAN) nanocomposite rose from 11.9 mg/g for Gl to 14.1 mg/g in accordance with the isotherm analysis, which shows that the Langmuir isotherm properly characterizes the experimental data. The pseudo-second-order model (R2 = 0.998) properly expresses the experimental data. The reusability research proved that the adsorbents may be reused effectively. The overall results suggest that the modified Gl by PAN might be used as a low-cost, natural adsorbent for eliminating CR color from textile effluent.</jats:p>

Topics
  • nanocomposite
  • scanning electron microscopy
  • x-ray diffraction