Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goncalves, Vmf

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Evaluation of BPA and Bis-GMA Release from Recent Dental Composite Materials by LC-MS/MScitations

Places of action

Chart of shared publication
Fernandes, Jo
1 / 1 shared
Pinho, T.
1 / 2 shared
Cunha, Sc
1 / 1 shared
Lopes Rocha, L.
1 / 2 shared
Tiritan, Me
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fernandes, Jo
  • Pinho, T.
  • Cunha, Sc
  • Lopes Rocha, L.
  • Tiritan, Me
OrganizationsLocationPeople

article

Evaluation of BPA and Bis-GMA Release from Recent Dental Composite Materials by LC-MS/MS

  • Fernandes, Jo
  • Pinho, T.
  • Goncalves, Vmf
  • Cunha, Sc
  • Lopes Rocha, L.
  • Tiritan, Me
Abstract

Bisphenol-A (BPA) is a xenoestrogen widely used as a synthetic precursor of resin monomers. There is arise need to acquire BPA-free resin-matrix composites to prevent the health effects of BPA. Six composites with distinctive manufacturer specifications were considered to evaluate the degree of release of BPA and bisphenol A-Diglycidyl Methacrylate (Bis-GMA) in a dental composite. The light-cured resin-matrix specimens (n = 5 for each composite type) were incubated at 37 ? in 1 mL of a 75% ethanol-water solution in a sealed amber glass vial for 7 days. The 75% ethanol-water solution was replaced daily and immediately frozen (-20 ?) until liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. BPA was not detected in any studied resin-based materials. However, Bis-GMA was detected in almost all the studied samples during the experiment, except AF and BF. The highest Bis-GMA concentration was released from ED at 67.43 ng/mL, followed by BE, FS, and NC with 40.75 ng/mL, 8.30 ng/mL, and 0.94 ng/mL, respectively. There is a clear need for more precise and standardized analytical methods to assess the short- and long-term release of resin-based materials. Furthermore, manufacturers should be obliged to provide complete details of the chemical composition of dental products and to promote the development of materials without estrogenic potential.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • composite
  • chemical composition
  • resin
  • spectrometry
  • liquid chromatography
  • liquid chromatography-mass spectrometry
  • tandem mass spectrometry