People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colas, Florent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Studycitations
- 2018Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution
- 2018Development of Infrared-Sensor for Detecting Water Pollution Based on Selenide Waveguide
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infraredcitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2014Maximizing the SERS signal by adjusting the arrangement of nanocylinders
- 2013RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2012Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glasscitations
- 2012Optical sensor based on chalcogenide glasses for IR detection of bio-chemical entities
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2007Chalcogenide waveguide for IR optical rangecitations
- 2007Chalcogenide waveguide for IR optical rangecitations
Places of action
Organizations | Location | People |
---|
article
Chalcogenide Glass Optical Waveguides for Infrared Biosensing
Abstract
Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors.