Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valdez Madrid, Dulce Elizabeth

  • Google
  • 1
  • 8
  • 2

Ghent University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023An automated wireless system for monitoring concrete structures based on embedded electrical resistivity sensors : data transmission and effects on concrete properties2citations

Places of action

Chart of shared publication
Plets, David
1 / 2 shared
Goethals, Jasper
1 / 2 shared
Cnudde, Veerle
1 / 39 shared
Abbas, Yawar
1 / 3 shared
Aminzadeh, Reza
1 / 2 shared
Matthys, Stijn
1 / 37 shared
Tenório Filho, José Roberto
1 / 11 shared
Vermeeren, Günter
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Plets, David
  • Goethals, Jasper
  • Cnudde, Veerle
  • Abbas, Yawar
  • Aminzadeh, Reza
  • Matthys, Stijn
  • Tenório Filho, José Roberto
  • Vermeeren, Günter
OrganizationsLocationPeople

article

An automated wireless system for monitoring concrete structures based on embedded electrical resistivity sensors : data transmission and effects on concrete properties

  • Plets, David
  • Goethals, Jasper
  • Cnudde, Veerle
  • Abbas, Yawar
  • Aminzadeh, Reza
  • Matthys, Stijn
  • Tenório Filho, José Roberto
  • Vermeeren, Günter
  • Valdez Madrid, Dulce Elizabeth
Abstract

Modern infrastructure heavily relies on robust concrete structures, underscoring the critical need for effective monitoring to ensure their safety and durability. This paper addresses this imperative issue by introducing an innovative automated and wireless system for continuous structural monitoring. By employing embedded electrical resistivity sensors coupled with a wireless-based data transmission mechanism, real-time data collection becomes feasible. We provide a general description of the system's architecture and its application in a pilot study covering the effects of the devices on concrete properties and data transmission. The dielectric properties of concrete specimens were investigated under natural and accelerated curing/degradation and the results were used in the final design of the antenna device. Furthermore, a pilot test comprising four reinforced concrete columns was used to investigate the range of data transmission from inside to outside of the concrete, the effects of the hardware device on the compressive strength and concrete distribution in the columns, and the data transmission quality in real time under realistic exposure conditions.

Topics
  • resistivity
  • strength
  • durability
  • curing