Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zerrad, Fatima-Ezzahra

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications17citations

Places of action

Chart of shared publication
Saih, Mohamed
1 / 1 shared
Hussein, Mousa
1 / 1 shared
Marzouk, Mohamed
1 / 1 shared
Rhazi, Youssef
1 / 1 shared
Nejdi, Ibrahime Hassan
1 / 1 shared
Ghaffar, Adnan
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Saih, Mohamed
  • Hussein, Mousa
  • Marzouk, Mohamed
  • Rhazi, Youssef
  • Nejdi, Ibrahime Hassan
  • Ghaffar, Adnan
OrganizationsLocationPeople

article

Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications

  • Saih, Mohamed
  • Hussein, Mousa
  • Marzouk, Mohamed
  • Rhazi, Youssef
  • Zerrad, Fatima-Ezzahra
  • Nejdi, Ibrahime Hassan
  • Ghaffar, Adnan
Abstract

<jats:p>In this paper, a compact dual-wideband fractal antenna is created for Bluetooth, WiMAX, WLAN, C, and X band applications. The proposed antenna consists of a circularly shaped resonator that contains square slots and a ground plane where a gap line is incorporated to increase the gain and bandwidth with a small volume of 40 × 34 × 1.6 mm3. The patch was supported by the FR4 dielectric, which had a permittivity of 4.4 and tan δ = 0.02. A 50 Ω microstrip line fed this antenna. The antenna was designed by the HFSS program, and after that, the simulated results were validated using the measured results. The measurement results confirm that the suggested antenna achieves dual-band frequencies ranging from 2.30 to 4.10 GHz, and from 6.10 GHz to 10.0 GHz, resonating at 2.8, 3.51, 6.53, and 9.37 GHz, respectively, for various applications including commercial, scholarly, and medical applications. Moreover, the antenna’s ability to operate within the frequency range of 3.1–10.6 GHz is in accordance with the FCC guidelines for the use of UWB antennas in breast cancer detection. Over the operational bands, the gain varied between 2 and 9 dB, and an efficiency of 92% was attained. A good agreement between the simulation and the measured results was found.</jats:p>

Topics
  • impedance spectroscopy
  • simulation