People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fusiek, Grzegorz
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Development of Fiber Bragg grating strain amplification sensor for use in nuclear power plants
- 2023Design and implementation of a passive autoranging circuit for hybrid FBG-PZT photonic current transducercitations
- 2022Construction and evaluation of an optical medium voltage transducer module aimed at a 132 kV optical voltage sensor for WAMPAC systemscitations
- 2020Photonic voltage transducer with lightning impulse protection for distributed monitoring of MV networkscitations
- 2018Design and demonstration of a low-cost small-scale fatigue testing machine for multi-purpose testing of materials, sensors and structurescitations
- 2017Comparison of epoxy and braze-welded attachment methods for FBG strain gauges
- 2017Optical voltage sensor for MV networkscitations
- 2016First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensorscitations
- 2012Towards the development of a downhole optical voltage sensor for monitoring electrical submersible pumpscitations
- 2011Induction heating assisted optical fiber bonding and sealing techniquecitations
- 2011Preliminary evaluation of a high-pressure, high-temperature downhole optical sensorcitations
Places of action
Organizations | Location | People |
---|
article
Design and implementation of a passive autoranging circuit for hybrid FBG-PZT photonic current transducer
Abstract
<p>In this paper, we present a novel technique for passively autoranging a photonic current transducer (PCT) that incorporates a current transformer (CT), piezoelectric transducer (PZT) and fiber Bragg grating (FBG). Due to the usage of single-mode fiber and FBG, multiple PCTs can be interconnected and distributed over a long distance, for example along a power network, greatly reducing the cost of sensor deployment and offering other unique advantages. The autoranging technique relies on the usage of multiple, serially connected CT burden resistors and associated static MOSFET switches to realize instantaneous shortening of the resistors in response to increasing measured current. This functionality is realized passively, utilizing a modular, μW-power comparator circuit that powers itself from the electrical energy supplied by the CT within a small fraction of the 50/60 Hz cycle. The resultant instantaneous changes in sensor gain will be ultimately detected by the central FBG interrogator through real-time analysis of the optical signals and will be used to apply appropriate gain scaling for each sensor. The technique will facilitate the usage of a single PCT to cover an extended dynamic range of the measurement that is required to realize a combined metering- and protection-class current sensor. This paper is limited to the description of the design process, construction, and testing of a prototype passive autoranging circuitry for integration with the PCT. The two-stage circuitry that is based on two burden resistors, 1 Ω and 10 Ω, is used to prove the concept and demonstrate the practically achievable circuit characteristics. It is shown that the circuit correctly reacts to input current threshold breaches of approximately 2 A and 20 A within a 3 ms reaction time. The circuit produces distinct voltage dips across burden resistors that will be used for signal scaling by the FBG interrogator.</p>