People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Min, Rui
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Correction: Savović et al. Power Flow in Multimode Graded-Index Microstructured Polymer Optical Fibers. Polymers 2023, 15, 1474
- 2023Power Flow in Multimode Graded-Index Microstructured Polymer Optical Fiberscitations
- 2023Bragg Gratings in ZEONEX Microstructured Polymer Optical Fiber With 266 nm Nd:YAG Lasercitations
- 2022Mode Coupling and Steady-State Distribution in Multimode Step-Index Organic Glass-Clad PMMA Fiberscitations
- 2022Treatment of Mode Coupling in Step-Index Multimode Microstructured Polymer Optical Fibers by the Langevin Equationcitations
- 2022Influence of the Width of Launch Beam Distribution on the Transmission Performance of Seven-Core Polymer-Clad Silica Fiberscitations
- 2022Transmission performance of multimode W-type microstructured polymer optical fiberscitations
- 2022Interrogation Method with Temperature Compensation Using Ultra-Short Fiber Bragg Gratings in Silica and Polymer Optical Fibers as Edge Filterscitations
- 2021Compact dual-strain sensitivity polymer optical fiber grating for multi-parameter sensingcitations
- 2021Chirped POF Bragg grating production utilizing UV cure adhesive coating for multiparameter sensingcitations
- 2020Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preformcitations
- 2020Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preform
- 2019Inscription of Bragg gratings in undoped PMMA mPOF with Nd:YAG laser at 266 nm wavelengthcitations
- 2019Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applicationscitations
- 2018Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratingscitations
- 2018Bragg Grating Inscription With Low Pulse Energy in Doped Microstructured Polymer Optical Fiberscitations
- 2018Influence of the Cladding Structure in PMMA mPOFs Mechanical Properties for Strain Sensors Applicationscitations
- 2018Fast Inscription of Long Period Gratings in Microstructured Polymer Optical Fiberscitations
- 2018Thermal stability of fiber Bragg gratings inscribed in microstructured polymer optical fibers with a single UV laser pulse
- 2018Largely tunable dispersion chirped polymer FBGcitations
- 2018Microstructured PMMA POF chirped Bragg gratings for strain sensingcitations
- 2018LPG inscription in mPOF for optical sensingcitations
- 2018Chirped mPOF Bragg grating for strain sensing
- 2017Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fiberscitations
- 2016Passive and Portable Polymer Optical Fiber Cleavercitations
Places of action
Organizations | Location | People |
---|
article
Interrogation Method with Temperature Compensation Using Ultra-Short Fiber Bragg Gratings in Silica and Polymer Optical Fibers as Edge Filters
Abstract
The use of simpler and less bulky equipment, with a reliable performance and at relative low cost is increasingly important when assembling sensing configurations for a wide variety of applications. Based on this concept, this paper proposes a simple, efficient and relative low‐cost fiber Bragg grating (FBG) interrogation solution using ultra‐short FBGs (USFBGs) as edge filters. USFBGs with different lengths and reflection bandwidths were produced in silica optical fiber and in poly(methyl methacrylate) (PMMA) microstructured polymer optical fiber (mPOF), and by adjusting specific inscription parameters and the diffraction pattern, these gratings can present self‐apodization and unique spectral characteristics suitable for filtering operations. In addition to being a cost‐effective edge filter solution, USFBGs and standard uniform FBGs in silica fiber have similar<br/>thermal sensitivities, which results in a straightforward operation without complex equipment or calculations. This FBG interrogation configuration is also quite promising for dynamic measurements, and due to its multiplexing capabilities multiple USFBGs can be inscribed in the same optical fiber, allowing to incorporate several filters with identical or different spectral characteristics at specific wavelength regions in the same fiber, thus showing great potential to create and develop new sensing configurations