Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tayebi, Salar

  • Google
  • 2
  • 5
  • 3

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Fully Blind Electromagnetic Characterization of Deep Sub-Wavelength (λ /100) Dielectric Slabs With Low Bandwidth Differential Transient Radar Technique at 10 GHz2citations
  • 2022A Novel Approach to Non-Destructive Rubber Vulcanization Monitoring by the Transient Radar Method1citations

Places of action

Chart of shared publication
Pourkazemi, Ali
2 / 10 shared
Stiens, Johan
2 / 9 shared
Kamami, Olsi
1 / 1 shared
Thibaut, Kato
1 / 1 shared
Ospitia Patino, Nicolas
1 / 11 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Pourkazemi, Ali
  • Stiens, Johan
  • Kamami, Olsi
  • Thibaut, Kato
  • Ospitia Patino, Nicolas
OrganizationsLocationPeople

article

A Novel Approach to Non-Destructive Rubber Vulcanization Monitoring by the Transient Radar Method

  • Kamami, Olsi
  • Thibaut, Kato
  • Tayebi, Salar
  • Ospitia Patino, Nicolas
  • Pourkazemi, Ali
  • Stiens, Johan
Abstract

Rubber is one of the most used materials in the world; however, raw rubber shows a relatively very low mechanical strength. Therefore, it needs to be cured before its ultimate applicatios. Curing process specifications, such as the curing time and temperature, influence the material properties of the final cured product. The transient radar method (TRM) is introduced as an alternative for vulcanization monitoring in this study. Three polyurethane-rubber samples with different curing times of 2, 4, and 5.5 min were studied by TRM to investigate the feasibility and robustness of the TRM in curing time monitoring. Additionally, the mechanical stiffness of the samples was investigated by using a unidirectional tensile test to investigate the potential correlations between curing time, dielectric permittivity, and stiffness. According to the results, the complex permittivity and stiffness of the samples with 2, 4, and 5.5 min of curing time was 17.33 ± 0.07 − (2.41 ± 0.04)j; 17.09 ± 0.05 − (4.90 ± 0.03)j; 23.60 ± 0.05 − (14.06 ± 0.06)j; and 0.29, 0.35, and 0.38 kPa, respectively. Further statistical analyses showed a correlation coefficient of 0.99 (p = 0.06), 0.80 (p = 0.40), and 0.92 (p = 0.25) between curing time–stiffness, curing time–permittivity (real part), and curing time–permittivity (imaginary part), respectively. The correlation coefficient between curing time and permittivity can show the potential of the TRM system in contact-free vulcanization monitoring, as the impact of vulcanization can be tracked by means of TRM. View Full-Text<br/>

Topics
  • impedance spectroscopy
  • strength
  • rubber
  • curing