Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schmidt, Georg Cornelius

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Printed Multilayer Piezoelectric Transducers on Paper for Haptic Feedback and Dual Touch-Sound Sensation7citations

Places of action

Chart of shared publication
Eland, Robert
1 / 1 shared
Strutwolf, Jörg
1 / 2 shared
Drossel, Welf-Guntram
1 / 96 shared
Hübler, Arved Carl
1 / 1 shared
Werner, Jonas Maximilian
1 / 1 shared
Weissbach, Thomas
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Eland, Robert
  • Strutwolf, Jörg
  • Drossel, Welf-Guntram
  • Hübler, Arved Carl
  • Werner, Jonas Maximilian
  • Weissbach, Thomas
OrganizationsLocationPeople

article

Printed Multilayer Piezoelectric Transducers on Paper for Haptic Feedback and Dual Touch-Sound Sensation

  • Eland, Robert
  • Schmidt, Georg Cornelius
  • Strutwolf, Jörg
  • Drossel, Welf-Guntram
  • Hübler, Arved Carl
  • Werner, Jonas Maximilian
  • Weissbach, Thomas
Abstract

With a growing number of electronic devices surrounding our daily life, it becomes increasingly important to create solutions for clear and simple communication and interaction at the human machine interface (HMI). Haptic feedback solutions play an important role as they give a clear direct link and response to the user. This work demonstrates multifunctional haptic feedback devices based on fully printed piezoelectric transducers realized with functional polymers on thin paper substrate. The devices are flexible; lightweight and show very high out-of-plane deflection of 213 µm at a moderate driving voltage of 50 Vrms (root mean square) achieved by an innovative multilayer design with up to five individually controllable active layers. The device creates a very clear haptic sensation to the human skin with a blocking force of 0.6 N at the resonance frequency of 320 Hz, which is located in the most sensitive range of the human fingertip. Additionally the transducer generates audible information above two kilohertz with a remarkable high sound pressure level. Thus the paper-based approach can be used for interactive displays in combination with touch sensation; sound and color prints. The work gives insights into the manufacturing process; the electrical characteristics; and an in-depth analysis of the 3D deflection of the device under variable conditions. ; 22 ; 10

Topics
  • impedance spectroscopy
  • polymer