Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Madsen, Jens

  • Google
  • 2
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Study of prediction intervals in machine learning assisted mid-infrared spectroscopy for the diagnosis of neonatal respiratory distress syndromecitations
  • 2022Prediction of neonatal respiratory distress biomarker concentration by application of machine learning to mid-infrared spectra17citations

Places of action

Chart of shared publication
Postle, Anthony
1 / 1 shared
Vincent Veluthandath, Aneesh
2 / 2 shared
Clark, Howard W.
1 / 1 shared
Senthil Murugan, Ganapathy
2 / 22 shared
Ahmed, Waseem
2 / 2 shared
Wilkinson, James
2 / 34 shared
Clark, Howard
1 / 1 shared
Rowe, David
1 / 4 shared
Postle, Anthony D.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Postle, Anthony
  • Vincent Veluthandath, Aneesh
  • Clark, Howard W.
  • Senthil Murugan, Ganapathy
  • Ahmed, Waseem
  • Wilkinson, James
  • Clark, Howard
  • Rowe, David
  • Postle, Anthony D.
OrganizationsLocationPeople

article

Prediction of neonatal respiratory distress biomarker concentration by application of machine learning to mid-infrared spectra

  • Madsen, Jens
  • Vincent Veluthandath, Aneesh
  • Senthil Murugan, Ganapathy
  • Clark, Howard
  • Ahmed, Waseem
  • Rowe, David
  • Postle, Anthony D.
  • Wilkinson, James
Abstract

The authors of this study developed the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) combined with machine learning as a point-of-care (POC) diagnostic platform, considering neonatal respiratory distress syndrome (nRDS), for which no POC currently exists, as an example. nRDS can be diagnosed by a ratio of less than 2.2 of two nRDS biomarkers, lecithin and sphingomyelin (L/S ratio), and in this study, ATR–FTIR spectra were recorded from L/S ratios of between 1.0 and 3.4, which were generated using purified reagents. The calibration of principal component (PCR) and partial least squares (PLSR) regression models was performed using 155 raw baselined and second derivative spectra prior to predicting the concentration of a further 104 spectra. A three-factor PLSR model of second derivative spectra best predicted L/S ratios across the full range (R2: 0.967; MSE: 0.014). The L/S ratios from 1.0 to 3.4 were predicted with a prediction interval of +0.29, −0.37 when using a second derivative spectra PLSR model and had a mean prediction interval of +0.26, −0.34 around the L/S 2.2 region. These results support the validity of combining ATR–FTIR with machine learning to develop a point-of-care device for detecting and quantifying any biomarker with an interpretable mid-infrared spectrum.

Topics
  • laser emission spectroscopy
  • Fourier transform infrared spectroscopy
  • machine learning