People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lebental, Bérengère
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensorcitations
- 2022Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Reviewcitations
- 2022Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubescitations
- 2019Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regenerationcitations
- 2018Oxidation-based continuous laser writing in vertical nano-crystalline graphite thin films
- 2018A graphene-based non-volatile memory
- 2017Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses
- 2016Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Filmscitations
- 2016Nanosensors for sustainable cities - From fundamentals to deployments
- 2016Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulsescitations
- 2015A graphene-based non-volatile memory
- 2014A Novel Weigh-In Motion Sensor Using An Asphalt-Embedded Thin Film of Graphene-On-Clay and Carbon-Nanotubes
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014Nanosecond-laser-induced graphitization and amorphization of thin nano-crystalline graphite films
- 2012Carbon nanotubes and graphene-based microsonar for embedded monitoring of microporosity
- 2012Visco-acoustic modelling of a vibrating plate interacting with water confined in a domain of micrometric sizecitations
- 2011Capacitive ultrasonic micro-transducer made of carbon nanotubes: prospects for the in-situ embedded non-destructive testing of durability in cementitious materialscitations
- 2011Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineeringcitations
- 2011Nanosensors for nanoscale structural health monitoring in civil engineering: new insight on carbon nanotubes devices
- 2010Instrumentation of cementitious materials by embedded ultrasonic micro-transducers made of carbone nanotubes : prospects for in-situ non-destructive testing of durability
- 2009In-situ non destructive testing of cementitous materials via embedded ultrasonic transducers made up of carbon nanotubes.
- 2009Carbon nanotubes based ultrasonic transducer: realization process, morphological and mechanical properties
Places of action
Organizations | Location | People |
---|
article
Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review
Abstract
International audience ; Carbon nanotubes (CNTs) combine high electrical conductivity with high surface area and chemical stability, which makes them very promising for chemical sensing. While water quality monitoring has particularly strong societal and environmental impacts, a lot of critical sensing needs remain unmet by commercial technologies. In the present review, we show across 20 water monitoring analytes and 90 references that carbon nanotube-based electrochemical sensors, chemistors and field-effect transistors (chemFET) can meet these needs. A set of 126 additional references provide context and supporting information. After introducing water quality monitoring challenges, the general operation and fabrication principles of CNT water quality sensors are summarized. They are sorted by target analytes (pH, micronutrients and metal ions, nitrogen, hardness, dissolved oxygen, disinfectants, sulfur and miscellaneous) and compared in terms of performances (limit of detection, sensitivity and detection range) and functionalization strategies. For each analyte, the references with best performances are discussed. Overall, the most frequently investigated analytes are H+ (pH) and lead (with 18% of references each), then cadmium (14%) and nitrite (11%). Micronutrients and toxic metals cover 40% of all references. Electrochemical sensors (73%) have been more investigated than chemistors (14%) or FETs (12%). Limits of detection in the ppt range have been reached, for instance Cu(II) detection with a liquid-gated chemFET using SWCNT functionalized with peptide-enhanced polyaniline or Pb(II) detection with stripping voltammetry using MWCNT functionalized with ionic liquid-dithizone based bucky-gel. The large majority of reports address functionalized CNTs (82%) instead of pristine or carboxyl-functionalized CNTs. For analytes where comparison is possible, FET-based and electrochemical transduction yield better performances than chemistors (Cu(II), Hg(II), Ca(II), H2O2); non-functionalized CNTs may yield better ...