People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adjeroud, Noureddine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Role of ZnO and MgO interfaces on the growth and optoelectronic properties of atomic layer deposited Zn1- x MgxO filmscitations
- 2021Evidence of Negative Capacitance and Capacitance Modulation by Light and Mechanical Stimuli in Pt/ZnO/Pt Schottky Junctionscitations
- 2021Promoting the LIST Centre of Excellence in Atomic Layer Deposition
- 2020Mesoporous TiO 2 anatase films for enhanced photocatalytic activity under UV and visible lightcitations
- 2020Mesoporous TiO2 anatase films for enhanced photocatalytic activity under UV and visible lightcitations
- 2020Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gascitations
- 2020SiO2 thin film growth through a pure atomic layer deposition technique at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Evidence of Negative Capacitance and Capacitance Modulation by Light and Mechanical Stimuli in Pt/ZnO/Pt Schottky Junctions
Abstract
<jats:p>We report on the evidence of negative capacitance values in a system consisting of metal-semiconductor-metal (MSM) structures, with Schottky junctions made of zinc oxide thin films deposited by Atomic Layer Deposition (ALD) on top of platinum interdigitated electrodes (IDE). The MSM structures were studied over a wide frequency range, between 20 Hz and 1 MHz. Light and mechanical strain applied to the device modulate positive or negative capacitance and conductance characteristics by tuning the flow of electrons involved in the conduction mechanisms. A complete study was carried out by measuring the capacitance and conductance characteristics under the influence of both dark and light conditions, over an extended range of applied bias voltage and frequency. An impact-loss process linked to the injection of hot electrons at the interface trap states of the metal-semiconductor junction is proposed to be at the origin of the apparition of the negative capacitance values. These negative values are preceded by a local increase of the capacitance associated with the accumulation of trapped electrons at the interface trap states. Thus, we propose a simple device where the capacitance values can be modulated over a wide frequency range via the action of light and strain, while using cleanroom-compatible materials for fabrication. These results open up new perspectives and applications for the miniaturization of highly sensitive and low power consumption environmental sensors, as well as for broadband impedance matching in radio frequency applications.</jats:p>