Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simões Dos Santos, Djalma

  • Google
  • 2
  • 11
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Design of an ultrasound transceiver asic with a switching-artifact reduction technique for 3D carotid artery imaging10citations
  • 2020Two-dimensional ultrasonic transducer array for shear wave elastography in deep tissues: a preliminary study2citations

Places of action

Chart of shared publication
Chang, Zu Yao
1 / 3 shared
Kim, Taehoon
1 / 1 shared
Verweij, Martin
1 / 6 shared
Bosch, Johan G.
1 / 4 shared
Pertijs, Michiel
1 / 6 shared
Noothout, Emile
1 / 5 shared
Jong, Nico De
1 / 4 shared
Fool, Fabian
1 / 3 shared
Vos, Hendrik J.
1 / 4 shared
Furuie, Sérgio S.
1 / 1 shared
Cardoso, Fernando M.
1 / 1 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Chang, Zu Yao
  • Kim, Taehoon
  • Verweij, Martin
  • Bosch, Johan G.
  • Pertijs, Michiel
  • Noothout, Emile
  • Jong, Nico De
  • Fool, Fabian
  • Vos, Hendrik J.
  • Furuie, Sérgio S.
  • Cardoso, Fernando M.
OrganizationsLocationPeople

article

Design of an ultrasound transceiver asic with a switching-artifact reduction technique for 3D carotid artery imaging

  • Chang, Zu Yao
  • Kim, Taehoon
  • Verweij, Martin
  • Bosch, Johan G.
  • Pertijs, Michiel
  • Noothout, Emile
  • Jong, Nico De
  • Fool, Fabian
  • Simões Dos Santos, Djalma
  • Vos, Hendrik J.
Abstract

<p>This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µm high-voltage Bipolar-CMOS-DMOS (HV BCD) process, adopted a programmable switch matrix that allowed selected transducer elements in each row to be connected to a transmit and receive channel of an imaging system. This made the probe operate like an electronically translatable linear array, allowing large-aperture matrix arrays to be interfaced with a manageable number of system channels. This paper presents a second-generation ASIC that employed an improved switch design to minimize clock feedthrough and charge-injection effects of high-voltage metal–oxide–semiconductor field-effect transistors (HV MOSFETs), which in the first-generation ASIC caused parasitic transmis-sions and associated imaging artifacts. The proposed switch controller, implemented with cascaded non-overlapping clock generators, generated control signals with improved timing to mitigate the effects of these non-idealities. Both simulation results and electrical measurements showed a 20 dB reduction of the switching artifacts. In addition, an acoustic pulse-echo measurement successfully demonstrated a 20 dB reduction of imaging artifacts.</p>

Topics
  • simulation
  • semiconductor