Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Veselovsky, Andrej

  • Google
  • 1
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Impact of wind gust on high-speed characteristics of polarization mode dispersion in optical power ground wire cables10citations

Places of action

Chart of shared publication
Litvik, Jan
1 / 1 shared
Mullerova, Jarmila
1 / 1 shared
Benedikovic, Daniel
1 / 9 shared
Dubovan, Jozef
1 / 1 shared
Dado, Milan
1 / 1 shared
Glesk, Ivan
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Litvik, Jan
  • Mullerova, Jarmila
  • Benedikovic, Daniel
  • Dubovan, Jozef
  • Dado, Milan
  • Glesk, Ivan
OrganizationsLocationPeople

article

Impact of wind gust on high-speed characteristics of polarization mode dispersion in optical power ground wire cables

  • Litvik, Jan
  • Mullerova, Jarmila
  • Benedikovic, Daniel
  • Dubovan, Jozef
  • Veselovsky, Andrej
  • Dado, Milan
  • Glesk, Ivan
Abstract

Polarization mode dispersion is recognized as a key factor limiting optical transmission systems, particularly those fiber links that run at bit rates beyond 10 Gbps. In-line test andcharacterization of polarization mode dispersion are thus of critical importance to evaluate the quality of installed optical fibers that are in use for high-speed signal traffics. However, polarization-based effects in optical fibers are stochastic and quite sensitive to a range of environmental changes, including optical cable movements. This, in turn, gives rise to undesired variations in light polarization that adversely impair the quality of the signal transmission in the link. In this work, we elaborate on experimental testing and theoretical analysis to asses changes of polarization mode dispersion in optical fibers that are caused by environmental variations, here wind gusts in particular. The study was performed on commercially harnessed optical fibers installed within optical power ground wire cables, taking into account different weather conditions. More specifically, we showed that changes caused by wind gusts significantly influence the differential group delay and the principal state of polarization in those optical fibers. For this, we experimentally measured a number of parameters to characterize light polarization properties. Measurements were carried out on C-band operated fiber-optic link formed by 111-km-long power ground wire cables and 88 spectral channels, with a test time step of 1 min during 12 consecutive days. Variations in differential group delay allowed for sensitive testing of environmental changes with measured maxims up to 10 ps under the worst wind conditions. Moreover, measured parameters were used in a numerical model to assess the quality of transmitted <br/>high-bit-rate optical signals as a function of wind conditions. The analysis revealed a negligible impact of wind on a 10 Gbps transmission, while substantial influence was noticed for higher bit rates up to 100 Gbps. These results show promises for efficient sensing of environmental changes <br/>and subsequent monitoring of the quality of recently used fiber-optic link<br/>infrastructures.<br/>

Topics
  • impedance spectroscopy
  • dispersion
  • wire