People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hakeem, Abbas Saeed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Evaluating the impact of ZnO doping on electrical and thermal properties of calcium-aluminosilicate oxynitride glass-ceramicscitations
- 2023Graphene oxide/polyvinylpyrrolidone-doped MoO3 nanocomposites used for dye degradation and their antibacterial activity: a molecular docking analysis
- 2023Advanced High‐Energy All‐Solid‐State Hybrid Supercapacitor with Nickel‐Cobalt‐Layered Double Hydroxide Nanoflowers Supported on Jute Stick‐Derived Activated Carbon Nanosheetscitations
- 2023Printing Parameter Optimization of Additive Manufactured PLA Using Taguchi Design of Experimentcitations
- 2022A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Propertiescitations
- 2022Thermo-mechanical properties prediction of Ni-reinforced Al$_2$O$_3$ composites using micro-mechanics based representative volume elements
- 2022Sonochemical synthesis of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> heterojunction photocatalysts for the degradation of organic pollutants and pathogens: a combined experimental and computational studycitations
- 2022Thermo-mechanical properties prediction of Ni-reinforced Al2O3 composites using micro-mechanics based representative volume elementscitations
- 2021Microstructure Evaluation and Impurities in La Containing Silicon Oxynitridescitations
- 2021Microstructure Evaluation and Impurities in La Containing Silicon Oxynitridescitations
- 2020Spark Plasma Sintering of Hybrid Nanocomposites of Hydroxyapatite Reinforced with CNTs and SS316L for Biomedical Applicationscitations
- 2020Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applicationscitations
- 2015Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocompositescitations
- 2007Novel Route of Oxynitride Glass Synthesis and Characterisation of Glasses in the Ln-Si-O-N and Ln-Si-Al-O-N Systems
Places of action
Organizations | Location | People |
---|
article
Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications
Abstract
<jats:p>There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical properties that are comparable to commercial films for packaging applications. The color parameters were recorded at different pH values and the prepared NCFs showed distinctive colorimetric pH-responsive behavior during the transition from acidic to alkaline medium with high values for the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period. The current study proposes the prepared NCFs as renewable candidates for smart food packaging featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice for applications that demand films with fire-retardant properties.</jats:p>