People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skierucha, W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Application of a dagger probe for soil dielectric permittivity measurement by TDRcitations
- 2020Application of a Monopole Antenna Probe with an Optimized Flange Diameter for TDR Soil Moisture Measurementcitations
- 2020Time domain transmission sensor for soil moisture profile probe, selected technical aspects citations
- 2020Evaluation of a Multi-Rod Probe Performance for Accurate Measurements of Soil Water Contentcitations
- 2020Dielectric Properties of Glass Beads with Talc as a Reference Material for Calibration and Verification of Dielectric Methods and Devices for Measuring Soil Moisturecitations
- 2020Wideband Characterization of Soil Complex Dielectric Permittivity Spectrum
- 2019Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20 MHz–3 GHz dielectric permittivity spectrum for soils of medium texturecitations
- 2019An open-ended probe with an antenna for the measurement of the water content in the soilcitations
- 2019One-Port Vector Network Analyzer Characterization of Soil Dielectric Spectrumcitations
- 2019Verification of soil salinity index model based on 0.02–3 GHz complex dielectric permittivity spectrum measurementscitations
- 2019Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Small Volumes
- 2019A Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Well-Defined Sample Volumescitations
- 2018The Calibration-Free Method for Determining Dielectric Permittivity Spectrum
- 2018Electromagnetic multi-simulation method for determining dielectric permittivity spectrum
- 2018Impact of soil salinity on the relation between soil moisture and dielectric permittivitycitations
- 2018The Effect of Storage Time on Dielectric Properties of Pasteurized Milks and Yoghurtcitations
- 2017Soil salinity characterization based on 0.05-3 GHz dielectric permittivity measurementscitations
- 2017Wideband extraction of soil dielectric spectrum from vector-network-analyzer measurementscitations
- 20170.05–3 GHz VNA characterization of soil dielectric properties based on the multiline TRL calibrationcitations
Places of action
Organizations | Location | People |
---|
article
A Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Well-Defined Sample Volumes
Abstract
This paper presents a novel seven-rod sensor used for time-domain reflectometry (TDR) and frequency-domain reflectometry (FDR) measurements of soil water content in a well-defined sample volume. The probe directly measures the complex dielectric permittivity spectrum and for this purpose requires three calibration media: air, water, and ethanol. Firstly, electromagnetic simulations were used to study the influence of the diameter of a container on the sensitivity zone of the probe with respect to the measured calibration media and isopropanol as a verification liquid. Next, the probe was tested in three soils—sandy loam and two silt loams—with six water contents from air-dry to saturation. The conversion fromS11parameters to complex dielectric permittivity from vector network analyzer (VNA) measurements was obtained using an open-ended liquid procedure. The simulation and measurement results for the real part of the isopropanol dielectric permittivity obtained from four containers with different diameters were in good agreement with literature data up to 200 MHz. The real part of the dielectric permittivity was extracted and related to the moisture of the tested soil samples. Relations between the volumetric water content and the real part of the dielectric permittivity (by FDR) and apparent dielectric permittivity (by TDR) were compared with Topp’s equation. It was concluded that the best fit to Topp’s equation was observed in the case of a sandy loam. Data calculated according to the equation proposed by Malicki, Plagge, and Roth gave results closer to Topp’s calibration. The obtained results indicated that the seven-rod probe can be used to accurately measure of the dielectric permittivity spectrum in a well-defined sample volume of about 8 cm3 in the frequency range from 20 MHz to 200 MHz.