Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Janting, Jakob

  • Google
  • 14
  • 21
  • 124

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2020Annular Cavity Design for Photoluminescent Polymer Optical Fiber Sensors4citations
  • 2019Polymer Optical Fiber Tip Mass Production Etch Mechanism to Achieve CPC Shape for Improved Biosensor Performance9citations
  • 2019Polymer Optical Fiber Modification by Etching using Hansen Solubility Parameters - A Case Study of TOPAS, Zeonex and PMMA17citations
  • 2019Small and Robust All-Polymer Fiber Bragg Grating based pH Sensor54citations
  • 2019Effects of Solvent Etching on PMMA Microstructured Optical Fiber Bragg Grating11citations
  • 2018All-Polymer Fiber Bragg Grating based pH Sensor.1citations
  • 2017Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature23citations
  • 2016Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulsescitations
  • 2016Investigation of the in-solution relaxation of polymer optical fibre Bragg gratingscitations
  • 2016Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulses.citations
  • 2010Microsystem reliability: Polymer adhesive and coating materials for packagingcitations
  • 2006Techniques in Scanning Acoustic Microscopy for Enhanced Failure and Material Analysis of Microsystems5citations
  • 2005Surface tension driven shaping of adhesive microfluidic channel wallscitations
  • 2002Simulated SAM A-scans on multilayer MEMS componentscitations

Places of action

Chart of shared publication
Inglev, Rune
3 / 3 shared
Bang, Ole
10 / 142 shared
Hassan, Hafeez Ul
1 / 2 shared
Woyessa, Getinet
8 / 47 shared
Pedersen, Jens
2 / 3 shared
Nielsen, Kristian
5 / 54 shared
Pedersen, Jens Kristian Mølgaard
1 / 4 shared
Fasano, Andrea
2 / 20 shared
Rasmussen, Henrik Koblitz
2 / 62 shared
Mégret, Patrice
1 / 13 shared
Kinet, Damien
1 / 3 shared
Hu, Xuehao
1 / 7 shared
Caucheteur, Christophe
1 / 21 shared
Kinet, D.
1 / 1 shared
Hu, X.
1 / 8 shared
Mégret, P.
1 / 1 shared
Caucheteur, C.
1 / 2 shared
Geschke, Oliver
1 / 4 shared
Storm, Elisabeth K.
1 / 1 shared
Petersen, Dirch Hjorth
1 / 33 shared
Greisen, Christoffer
1 / 1 shared
Chart of publication period
2020
2019
2018
2017
2016
2010
2006
2005
2002

Co-Authors (by relevance)

  • Inglev, Rune
  • Bang, Ole
  • Hassan, Hafeez Ul
  • Woyessa, Getinet
  • Pedersen, Jens
  • Nielsen, Kristian
  • Pedersen, Jens Kristian Mølgaard
  • Fasano, Andrea
  • Rasmussen, Henrik Koblitz
  • Mégret, Patrice
  • Kinet, Damien
  • Hu, Xuehao
  • Caucheteur, Christophe
  • Kinet, D.
  • Hu, X.
  • Mégret, P.
  • Caucheteur, C.
  • Geschke, Oliver
  • Storm, Elisabeth K.
  • Petersen, Dirch Hjorth
  • Greisen, Christoffer
OrganizationsLocationPeople

article

Polymer Optical Fiber Tip Mass Production Etch Mechanism to Achieve CPC Shape for Improved Biosensor Performance

  • Hassan, Hafeez Ul
  • Bang, Ole
  • Janting, Jakob
Abstract

We report on a simple chemical etching method that enables nonlinear tapering of Polymer Optical Fiber (POF) tips to manufacture Compound Parabolic Concentrator (CPC) fiber tips. We show that, counter-intuitively, nonlinear tapering can be achieved by first etching the core and not the cladding. The etching mechanism is modelled and etched tips are characterized both geometrically and optically in a fluorescence glucose sensor chemistry. A Zemax model of the CPC tipped sensor<br/>predicts an optimal improvement in light capturing efficiency of a factor of 3.96 compared to the conventional sensor with a plane-cut fiber tip. A batch of eight CPC fiber tips has been manufactured by the chemical etching method. The batch average showed an increase of a factor of 3.16, which is only 20% less than the predicted value. The method is reproducible and can be up-scaled for mass production.

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • laser emission spectroscopy
  • etching