People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kottapalli, Ajay Giri Prakash
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Depositioncitations
- 2023Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensorscitations
- 2023Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensorscitations
- 2022An Inkjet-Printed Piezoresistive Bidirectional Flow Sensorcitations
- 2022Piezoresistive 3D graphene-PDMS spongy pressure sensors for IoT enabled wearables and smart productscitations
- 20213D Printed Graphene-Coated Flexible Lattice as Piezoresistive Pressure Sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors using Sacrificial Metal 3D Printingcitations
- 2021Fabrication of polymeric microstructures
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2020PDMS Flow Sensors With Graphene Piezoresistors Using 3D Printing and Soft Lithographycitations
- 2019Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Castingcitations
- 2019Fish-inspired flow sensing for biomedical applications
- 2017Cupula-inspired hyaluronic acid-based hydrogel encapsulation to form biomimetic MEMS flow sensorscitations
- 2017Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of zinc(II) in seawatercitations
- 2016From Biological Cilia to Artificial Flow Sensorscitations
- 2014Harbor seal inspired MEMS artificial micro-whisker sensorcitations
- 2014Sensor, method for forming the same, and method of controlling the same
- 2013Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehiclescitations
Places of action
Organizations | Location | People |
---|
article
Cupula-inspired hyaluronic acid-based hydrogel encapsulation to form biomimetic MEMS flow sensors
Abstract
<p>Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 µm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.</p>