Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Wen

  • Google
  • 2
  • 6
  • 93

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibre4citations
  • 2012An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent89citations

Places of action

Chart of shared publication
Canning, John
1 / 6 shared
Cook, Kevin
1 / 4 shared
Sultan, D. Saquib
1 / 1 shared
Scott, Stuart A.
1 / 3 shared
Dennis, John S.
1 / 1 shared
Redfern, Simon A. T.
1 / 4 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Canning, John
  • Cook, Kevin
  • Sultan, D. Saquib
  • Scott, Stuart A.
  • Dennis, John S.
  • Redfern, Simon A. T.
OrganizationsLocationPeople

article

Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibre

  • Canning, John
  • Liu, Wen
  • Cook, Kevin
Abstract

The regeneration of UV-written long period gratings (LPG) in boron-codoped germanosilicate “W” fibre is demonstrated and studied. They survive temperatures over 1000 °C. Compared with regenerated FBGs fabricated in the same type of fibre, the evolution curves of LPGs during regeneration and post-annealing reveal even more detail of glass relaxation. Piece-wise temperature dependence is observed, indicating the onset of a phase transition of glass in the core and inner cladding at ~500 °C and ~250 °C, and the melting of inner cladding between 860 °C and 900 °C. An asymmetric spectral response with increasing and decreasing annealing temperature points to the complex process dependent material system response. Resonant wavelength tuning by adjusting the dwell temperature at which regeneration is undertaken is demonstrated, showing a shorter resonant wavelength and shorter time for stabilisation with higher dwell temperatures. All the regenerated LPGs are nearly strain-insensitive and cannot be tuned by applying loads during annealing as done for regenerated FBGs.

Topics
  • impedance spectroscopy
  • phase
  • glass
  • glass
  • phase transition
  • Boron
  • annealing