People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruin, Frederik De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2025Gas-Phase Reactions in Nano-Strand Formation from Al-Fe-Ni Powder Reacted with CaF2-SiO2-Al2O3-MgO-MnO-TiO2 Flux at 1350 °C: SEM Study and Diffusion Calculations
- 2024Timed Thermodynamic Process Model Applied to Submerged Arc Welding Modified by Aluminium-Assisted Metal Powder Alloying
- 2024Nano-Strand Formation via Gas Phase Reactions from Al-Co-Fe Reacted with CaF2-SiO2-Al2O3-MgO Flux at 1350 °C: SEM Study and Thermochemistry Calculationscitations
- 2023A Review of the Thermochemical Behaviour of Fluxes in Submerged Arc Welding: Modelling of Gas Phase Reactionscitations
- 2023Chemical Behaviour of Copper in the Application of Unconstrained Cr-Ni-Al-Cu Metal Powders in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidencecitations
- 2022Chemical Interaction of Cr-Al-Cu Metal Powders in Aluminum-Assisted Transfer of Chromium in Submerged Arc Welding of Carbon Steelcitations
- 2022Modification of Flux Oxygen Behaviour via Co-Cr-Al Unconstrained Metal Powder Additions in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidencecitations
- 2022In Situ Modification of CaF2-SiO2-Al2O3-MgO Flux Applied in the Aluminium-Assisted Transfer of Titanium in the Submerged Arc Welding of Carbon Steel: Process Mineralogy and Thermochemical Analysiscitations
- 2022Application of Unconstrained Cobalt and Aluminium Metal Powders in the Alloying of Carbon Steel in Submerged Arc Welding: Thermodynamic Analysis of Gas Reactionscitations
- 2022Insight into the Chemical Behaviour of Chromium in CaF2-SiO2-Al2O3-MgO Flux Applied in Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Weldingcitations
- 2022Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Welding with Al-Cr-Ni Unconstrained Metal Powders: Thermodynamic Interpretation of Gas Reactionscitations
- 2022Aluminium Assisted Nickel Alloying in Submerged Arc Welding of Carbon Steel: Application of Unconstrained Metal Powderscitations
- 2022Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Welding: Application of Al-Cr-Ti-Cu Unconstrained Metal Powderscitations
- 2021Application of Copper as Stabiliser in Aluminium Assisted Transfer of Titanium in Submerged Arc Welding of Carbon Steelcitations
- 2021Reactions at the molten flux-weld pool interface in submerged arc weldingcitations
Places of action
Organizations | Location | People |
---|
article
Application of Copper as Stabiliser in Aluminium Assisted Transfer of Titanium in Submerged Arc Welding of Carbon Steel
Abstract
<jats:p>The element transfer of Ti from molten flux to the weld metal is limited to less than 310 ppm Ti in the submerged arc welding of carbon steel. This limitation is due to the high oxygen partial pressure prevailing at the molten flux-weld pool interface. Our previous study illustrated that the use of Al powder in combination with Ti powder improves the transfer of Ti to the weld metal to 4% Ti, whilst maintaining 509 ppm O in the weld metal. The weld metal ppm O should be controlled at 200 to 500 ppm O to maintain weld metal toughness. In this study, the addition of Cu powder with Ti and Al powder is applied to illustrate the stabiliser effect of Cu in the weld pool. The role of Cu as weld pool stabiliser is due to its decrease of the temperature required to melt Ti into the weld pool, so increasing the quantity of metal powder melted into the weld pool. The weld metal composition improved to 5.1% Ti, 3.6% Cu, and 371 ppm O. Thus, the role of Al in controlling the partial oxygen pressure at the molten flux-weld pool interface is maintained in the presence of Cu powder.</jats:p>