People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wederni, Asma
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Crystal Structure and Properties of Heusler Alloys: A Comprehensive Reviewcitations
- 2024Mechano-Synthesis, Structure, and Thermal and Magnetic Behaviors of the New Compound Mn1.2Co0.05Fe0.7P0.45Si0.5B0.05citations
- 2024Ni50Mn37.5Sn12.5 Heusler Alloy: Influence of Co Addition on the Structure, Martensitic Transition, and Magnetic Properties
- 2023Influence of the Geometrical Aspect Ratio on the Magneto-Structural Properties of Co2MnSi Microwirescitations
- 2023Preparation and Magneto-Structural Investigation of High-Ordered (L21 Structure) Co2MnGe Microwirescitations
- 2023Effects of thermal cycling on the thermal and magnetic response of Ni–Mn–Sn–Pd alloyscitations
- 2023Preparation and Magneto-Structural Investigation of High Ordered Structure in Co2MnGe Microwires
- 2023Enhancing the Squareness and Bi-Phase Magnetic Switching of Co2FeSi Microwires for Sensing Applicationcitations
- 2023Carbon-Doped Co2MnSi Heusler Alloy Microwires with Improved Thermal Characteristics of Magnetization for Multifunctional Applicationscitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2021Ni-Mn-Sn-Cu Alloys after Thermal Cycling: Thermal and Magnetic Responsecitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
Places of action
Organizations | Location | People |
---|
article
Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloys
Abstract
<jats:p>Martensitic transition and magnetic response of Ni50−x Pdx,y Mn36 Sn14−y (x = 0, 1, 2 and y = 0, 1) Heusler alloys were analysed. The crystalline structure of each composition was solved by X-ray diffraction pattern fitting. For x = 1 and 2, the L21 austenite structure is formed and, for y = 1, the crystallographic phase is a modulated martensitic structure. From differential scanning calorimetry scans, we determine characteristic transformation temperatures and the entropy/enthalpy changes. The temperatures of the structural transformation increase with the addition of Pd to replace Ni or Sn, whereas the austenitic Curie temperature remains almost unvarying. In addition, the magneto-structural transition, investigated by magnetic measurements, is adjusted by suitable Pd doping in the alloys. The peak value of the magnetic entropy changes reached 4.5 J/(kg K) for Ni50Mn36Sn13Pd1 (external field: 50 kOe).</jats:p>