People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Inglezakis, Vassilis J.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Structural, morphological and physiochemical analysis of SiC8H20O4/C2H5O/C7H16 modified mesoporous silica aerogels
- 2023Synthesis of a novel perovskite-carbon aerogel hybrid adsorbent with multiple metal-Lewis active sites for the removal of dyes from watercitations
- 2023Efficient mercury removal from water by using modified natural zeolites and comparison to commercial adsorbentscitations
- 2022Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbentscitations
- 2021Silica aerogels; a review of synthesis, applications and fabrication of hybrid compositescitations
- 2020Experimental study of zeolitic diffusion by use of a concentration-dependent surface diffusion modelcitations
- 2020Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensorscitations
- 2020Catalytic oxidation of methylene blue by use of natural zeolite-based silver and magnetite nanocompositescitations
- 2020Synthesis of biosourced silica-Ag nanocomposites and amalgamation reaction with mercury in aqueous solutionscitations
- 2020Mercury reduction and chemisorption on the surface of synthetic zeolite silver nanocompositescitations
- 2020A fractal-based correlation for time-dependent surface diffusivity in porous adsorbentscitations
- 2020Surface interactions and mechanisms study on the removal of iodide from water by use of natural Zeolite-based silver nanocompositescitations
- 2020Magnetic Fe3O4-Ag0 nanocomposites for effective mercury removal from watercitations
- 2019Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equationscitations
- 2019Application of nanoparticles and nanomaterials in thermal ablation therapy of cancercitations
- 2019Synthetic sodalite doped with silver nanoparticlescitations
- 2019Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolitescitations
- 2019Manufacturing of ultra-fine particle coal fly ash–A380 aluminum matrix composites with improved mechanical properties by improved ring milling and oscillating microgrid mixingcitations
- 2019In situ production of high purity noble metal nanoparticles on fumed silica and catalytic activity towards 2-nitrophenol reductioncitations
- 2018A comparative study on phyllosilicate and tectosilicate mineral structural propertiescitations
- 20183 -nanoparticles as a powerful tool for membrane pore size determination and mercury removal
- 2018Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from watercitations
- 2018Silver nanoparticles impregnated zeolites derived from coal fly ashcitations
- 2012Mathematical modeling of sorption process of Cu2+ ions on analcime and clinoptilolitecitations
- 2012Automotive industry challenges in meeting EU 2015 environmental standardcitations
- 2009Automotive shredder residue (ASR)citations
- 2001Applicability of simplified models for the estimation of ion exchange diffusion coefficients in zeolitescitations
Places of action
Organizations | Location | People |
---|
article
Catalytic oxidation of methylene blue by use of natural zeolite-based silver and magnetite nanocomposites
Abstract
<p>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt. % Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt. % Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25-36% and that Fe<sub>3</sub>O<sub>4</sub>@NZU is superior to Ag<sub>2</sub>O@NZU and Ag<sup>0</sup>@NZU, leading to 55% removal without oxidant and 97% in the presence of H<sub>2</sub>O<sub>2</sub>. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H<sub>2</sub>O<sub>2</sub> concentration.</p>