People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Genorio, Bostjan
University of Ljubljana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediationcitations
- 2022Ag-MnxOy on Graphene Oxide Derivatives as Oxygen Reduction Reaction Catalyst in Alkaline Direct Ethanol Fuel Cellscitations
- 2022The efficiency of chitosan-graphene oxide composite membranes modified with genipin in fuel cell applicationcitations
- 2021Efficient Chitosan/Nitrogen-doped Reduced Graphene Oxide Composite Membranes for Direct Alkaline Ethanol Fuel Cellscitations
Places of action
Organizations | Location | People |
---|
article
Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediation
Abstract
Polyethylene terephthalate (PET) microplastics constitute a significant portion of plastic pollution in the environment and pose substantial environmental challenges. In this study, the effectiveness of the Fenton process and post-oxidation coagulation for the removal of non-weathered and UV-weathered PET microplastics (PET MPs) were investigated. A response surface methodology was used to investigate the interplay between PET concentration and ferrous ion (Fe2+) concentration. The models revealed an intricate interplay between these variables, highlighting the need for a balanced system for optimal PET MP removal. For non-weathered PET, the simultaneous increase in the concentrations of both PET microplastics and Fe2+ was found to enhance the removal efficiency. However, this synergistic effect was not observed in UV-weathered PET, which also demonstrated a more pronounced effect from the Fe2+ concentration. The statistical analysis provided a strong basis for the validity of the models. X-ray photoemission spectroscopy (XPS) further elucidated the mechanisms behind these findings, revealing that UV weathering results in surface changes, which facilitate hydroxyl radical oxidation. These findings underline the complexity of the Fenton process in PET microplastic removal and the different behavior of non-weathered and UV-weathered microplastics. This has significant implications for tailoring remediation strategies and underscores the importance of considering environmental weathering in these strategies.