Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uspenskii, Sergey

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Photo-Curing Chitosan-g-N-Methylolacrylamide Compositions: Synthesis and Characterizationcitations

Places of action

Chart of shared publication
Svidchenko, Eugenia
1 / 2 shared
Goncharuk, Galina
1 / 3 shared
Zelenetskii, Alexander
1 / 2 shared
Potseleev, Vladislav
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Svidchenko, Eugenia
  • Goncharuk, Galina
  • Zelenetskii, Alexander
  • Potseleev, Vladislav
OrganizationsLocationPeople

article

Photo-Curing Chitosan-g-N-Methylolacrylamide Compositions: Synthesis and Characterization

  • Svidchenko, Eugenia
  • Goncharuk, Galina
  • Zelenetskii, Alexander
  • Potseleev, Vladislav
  • Uspenskii, Sergey
Abstract

<jats:p>Chitosan is one of the promising compounds for use in various fields of medicine. However, for successful application, materials based on it must be insoluble in water and have specified physical and mechanical properties. In this work, we studied the interaction of N-methylolacrylamide (NMA) and chitosan upon concentration of the solutions, both under the action of UV radiation and without it, which results in curing of the polymer matrix. The main products, proposed mechanisms of the crosslinking reaction, and the influence of external conditions on these processes have been revealed using NMR, IR, and UV spectroscopy. It was found that the reaction proceeds along three pathways. The main reactions proceed with the amino groups of chitosan, and the hydroxymethyl and vinyl groups of NMA. Studies have shown that for the formation of insoluble materials based on chitosan, the best content in the initial cast solution is 2 wt% of chitosan at 0.25 wt% concentration of NMA. Films formed from such solutions possessed high strength and deformation characteristics, namely an elastic modulus of about 1500 GPa, a strength of about 30 MPa, and an elongation at break of about 100%.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • strength
  • Nuclear Magnetic Resonance spectroscopy
  • curing