People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Steenberge, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Impact of rubber content on average properties and distributions of high impact polystyrene by means of multiphase coupled matrix-based Monte Carlo
- 2024Surfactant-free peroxidase-mediated enzymatic polymerization of a biorenewable butyrolactone monomer via a green approach : synthesis of sustainable biobased latexescitations
- 2024Combining ternary phase diagrams and multiphase coupled matrix-based Monte Carlo to model phase dependent compositional and molar mass variations in high impact polystyrene synthesiscitations
- 2024Exploring the influence of polybutadiene content on high-impact polystyrene properties : a multiphase coupled matrix-based Monte Carlo approach
- 2023Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach: Synthesis of Sustainable Biobased Latexes
- 2023Multi-angle evaluation of kinetic Monte-Carlo simulations as a tool to evaluate the distributed monomer composition in gradient copolymer synthesiscitations
- 2023Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis : unraveling the pathways to its monomer, dimers, and trimers formationcitations
- 2023Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis : unraveling the pathways to its monomer, dimers, and trimers formationcitations
- 2023Playing with process conditions to increase the industrial sustainability of poly(lactic acid)-based materialscitations
- 2023Comparing thermal degradation for fused filament fabrication (FFF) with chain or step-growth polymers
- 2022Identifying optimal synthesis protocols via the in silico characterization of (a)symmetric block and gradient copolymers with linear and branched chains
- 2022A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)scitations
- 2020Connecting polymer synthesis and chemical recycling on a chain-by-chain basis : a unified matrix-based kinetic Monte Carlo strategycitations
- 2020Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate)citations
- 2019The relevance of multi‐injection and temperature profiles to design multi‐phase reactive processing of polyolefinscitations
- 2017How penultimate monomer unit effects and initiator choice influence ICAR ATRP of n-butyl acrylate and methyl methacrylatecitations
- 2015Model-based visualization and understanding of monomer sequence formation in the synthesis of gradient copoly(2-oxazoline)s on the basis of 2-methyl-2-oxazoline and 2-phenyl-2-oxazolinecitations
- 2015Model-based design of the polymer microstructure : bridging the gap between polymer chemistry and engineering
- 2015Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineeringcitations
- 2014Fed-batch control and visualization of monomer sequences of individual ICAR ATRP gradient copolymer chainscitations
- 2012Linear gradient quality of ATRP copolymerscitations
Places of action
Organizations | Location | People |
---|
article
Fed-batch control and visualization of monomer sequences of individual ICAR ATRP gradient copolymer chains
Abstract
Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (approximate to 150,000), optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP). Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N',N '',N ''-pentamethyldiethylenetriamine) as deactivator at 80 degrees C. The linear gradient quality is determined in silico using the recently introduced gradient deviation (< GD >) polymer property. Careful selection or fed-batch addition of the conventional radical initiator I-2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties (< GD > approximate to 0.30; dispersity approximate to 1.1). Fed-batch addition of not only I-2, but also comonomer and deactivator (50 ppm) under starved conditions yields a < GD > below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.