People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aliberti, Angelo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Comparison of Bulk Polymeric Resin Composite and Hybrid Glass Ionomer Cement in Adhesive Class I Dental Restorations
Abstract
<p>This study aimed to investigate the mechanical behavior of resin composites and hybrid glass ionomer cement in class I adhesive dental restorations under loading and shrinkage conditions. Three CAD models of a mandibular first molar with class I cavities were created and restored with different techniques: a bi-layer of Equia Forte HT with Filtek One Bulk Fill Restorative composite (model A), a single layer of adhesive and Filtek One Bulk Fill Restorative (model B), and a single layer of Equia forte HT (model C). Each model was exported to computer-aided engineering software, and 3D finite element models were created. Models A and B exhibited a similar pattern of stress distribution along the enamel–restoration interface, with stress peaks of 12.5 MPa and 14 MPa observed in the enamel tissue. The sound tooth, B, and C models showed a similar trend along the interface between dentine and restoration. A stress peak of about 0.5 MPa was detected in the enamel of both the sound tooth and B models. Model C showed a reduced stress peak of about 1.2 MPa. A significant stress reduction in 4 mm deep class I cavities in lower molars was observed in models where non-shrinking dental filling materials, like the hybrid glass ionomer cement used in model C, were applied. Stress reduction was also achieved in model A, which employed a bi-layer technique with a shrinking polymeric filling material (bulk resin composite). Model C’s performance closely resembled that of a sound tooth.</p>