Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Volf, Irina

  • Google
  • 2
  • 7
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes5citations
  • 2021Hydrothermal Carbon as Reactive Fillers to Produce Sustainable Biocomposites with Aromatic Bio-Based Epoxy Resins14citations

Places of action

Chart of shared publication
Secula, Marius Sebastian
1 / 2 shared
Armanu, Emanuel
1 / 1 shared
Tofanica, Bogdan-Marian
1 / 1 shared
Bejenari, Iuliana
1 / 1 shared
Dinu, Roxana
1 / 2 shared
Mija, Alice
1 / 11 shared
Montes, Sarah
1 / 9 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Secula, Marius Sebastian
  • Armanu, Emanuel
  • Tofanica, Bogdan-Marian
  • Bejenari, Iuliana
  • Dinu, Roxana
  • Mija, Alice
  • Montes, Sarah
OrganizationsLocationPeople

article

The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes

  • Secula, Marius Sebastian
  • Armanu, Emanuel
  • Volf, Irina
  • Tofanica, Bogdan-Marian
Abstract

<jats:p>This paper explores the intricate relations between biomass polymeric composition, thermochemical conversion routes, char yields and features in order to advance the knowledge on biomass conversion processes and customize them to meet specific requirements. An exhaustive characterization has been performed for three types of biomasses: (i) spruce bark, a woody primary and secondary residue from forestry and wood processing; (ii) wheat straws—agricultural waste harvest from arable and permanent cropland; and (iii) vine shoots, a woody biomass resulting from vineyard waste. Chemical (proximate and ultimate analysis), biochemical, trace elements, and thermal analyses were performed. Also, Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and thermogravimetric analysis were conducted to establish the compositional and structural characteristics of feedstock. The main polymeric components influence the amount and quality of char. The high hemicellulose content recommends wheat straws as a good candidate especially for hydrothermal carbonization. Cellulose is a primary contributor to char formation during pyrolysis, suggesting that vine shoots may yield higher-quality char compared to that converted from wheat straws. It was shown that the char yield can be predicted and is strongly dependent on the polymeric composition. While in the case of spruce bark and wheat straws, lignin has a major contribution in the char formation, cellulose and secondary lignin are main contributors for vine shoots char.</jats:p>

Topics
  • pyrolysis
  • impedance spectroscopy
  • scanning electron microscopy
  • thermogravimetry
  • lignin
  • wood
  • cellulose
  • Fourier transform infrared spectroscopy
  • trace element