People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khunpakdee, Kittiched
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2024Biomass Waste Utilization as Nanocomposite Anodes through Conductive Polymers Strengthened SiO2/C from Streblus asper Leaves for Sustainable Energy Storagescitations
- 2023Insight into the Role of Conductive Polypyrrole Coated on Rice Husk-Derived Nanosilica-Reduced Graphene Oxide as the Anodes: Electrochemical Improvement in Sustainable Lithium-Ion Batteriescitations
Places of action
Organizations | Location | People |
---|
article
Biomass Waste Utilization as Nanocomposite Anodes through Conductive Polymers Strengthened SiO2/C from Streblus asper Leaves for Sustainable Energy Storages
Abstract
<jats:p>Sustainable anode materials, including natural silica and biomass-derived carbon materials, are gaining increasing attention in emerging energy storage applications. In this research, we highlighted a silica/carbon (SiO2/C) derived from Streblus asper leaf wastes using a simple method. Dried Streblus asper leaves, which have plenty of biomass in Thailand, have a unique leaf texture due to their high SiO2 content. We can convert these worthless leaves into SiO2/C nanocomposites in one step, producing eco-materials with distinctive microstructures that influence electrochemical energy storage performance. Through nanostructured design, SiO2/C is thoroughly covered by a well-connected framework of conductive hybrid polymers based on the sodium alginate–polypyrrole (SA-PPy) network, exhibiting impressive morphology and performance. In addition, an excellent electrically conductive SA-PPy network binds to the SiO2/C particle surface through crosslinker bonding, creating a flexible porous space that effectively facilitates the SiO2 large volume expansion. At a current density of 0.3 C, this synthesized SA-PPy@Nano-SiO2/C anode provides a high specific capacity of 756 mAh g−1 over 350 cycles, accounting for 99.7% of the theoretical specific capacity. At the high current of 1 C (758 mA g−1), a superior sustained cycle life of over 500 cycles was evidenced, with over 93% capacity retention. The research also highlighted the potential for this approach to be scaled up for commercial production, which could have a significant impact on the sustainability of the lithium-ion battery industry. Overall, the development of green nanocomposites along with polymers having a distinctive structure is an exciting area of research that has the potential to address some of the key challenges associated with lithium-ion batteries, such as capacity degradation and safety concerns, while also promoting sustainability and reducing environmental impact.</jats:p>