People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Przekop, Robert
Adam Mickiewicz University in Poznań
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubescitations
- 2024Preparation and Characterization of Composites Based on ABS Modified with Polysiloxane Derivativescitations
- 2024The Influence of Surface Texture of Elements Made of PA6-Based Composites on Anti-Graffiti Effect of Paint Coating
- 2024Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environmentcitations
- 2024Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxanecitations
- 2024Application of L-FDM Technology to the Printing of Tablets That Release Active Substances—Preliminary Researchcitations
- 2024OH End-Capped Silicone as an Effective Nucleating Agent for Polylactide—A Robotizing Method for Evaluating the Mechanical Characteristics of PLA/Silicone Blendscitations
- 2023Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elementscitations
- 2023Liquid to Fused Deposition Modeling (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology—Mechanical and Functional Propertiescitations
- 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth compositescitations
- 2023Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Rangecitations
- 2023Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teethcitations
- 2023Organosilicon Compounds in Hot-Melt Adhesive Technologiescitations
- 2023Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Propertiescitations
- 2022The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO2 Composites Used in 3D Printing (FDM/FFF)citations
- 2022Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Reviewcitations
- 2022Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustulescitations
- 2022New Ceramics Precursors Containing Si and Ge Atoms—Cubic Germasilsesquioxanes—Synthesis, Thermal Decomposition and Spectroscopic Analysiscitations
- 2022Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO<inf>2</inf> Dispersants and Stabilizers for Pigmented Epoxy Resinscitations
- 2022Carbonate Lake Sediments in the Plastics Processing-Preliminary Polylactide Composite Case Study: Mechanical and Structural Propertiescitations
- 2022Metallic Strontium as a Precursor of the Al2O3/SrCO3 Xerogels Obtained by the One-Pot Sol–Gel Methodcitations
- 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Compositescitations
- 2022Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistrycitations
- 2021Sol-Gel Approach for Design of Pt/Al2O3-TiO2 System-Synthesis and Catalytic Testscitations
- 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resinscitations
- 2021Phytotoxic effects of biosynthesized ZnO nanoparticles using Betonica officinalis extractcitations
- 2021A Wind Tunnel Experimental Study of Icing on NACA0012 Aircraft Airfoil with Silicon Compounds Modified Polyurethane Coatingscitations
- 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Compositescitations
- 2021Metallic Calcium as a Precursor for Sol-Gel Synthesis of CaCO3-SiO2 and CaO-SiO2 Systemscitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
- 2020Highly bulky spherosilicates as functional additives for polyethylene processing--Influence on mechanical and thermal propertiescitations
- 2019The influence of surface physicochemistry of solid fillers on dispersion in polyurea systems
- 2018One-pot synthesis of Al2O3-La2O2CO3 systems obtained from the metallic precursor by the sol-gel methodcitations
- 2018A new method of one-pot synthesis of efficient Au/SnO <inf>2</inf> electrocatalysts for fuel cells
- 2018New method for the synthesis of Al2O3–CaO and Al2O3–CaO–CaCO3 systems from a metallic precursor by the sol–gel routecitations
Places of action
Organizations | Location | People |
---|
article
OH End-Capped Silicone as an Effective Nucleating Agent for Polylactide—A Robotizing Method for Evaluating the Mechanical Characteristics of PLA/Silicone Blends
Abstract
<jats:p>Current research on materials engineering focuses mainly on bio-based materials. One of the most frequently studied materials in this group is polylactide (PLA), which is a polymer derived from starch. PLA does not have a negative impact on the natural environment and additionally, it possesses properties comparable to those of industrial polymers. The aim of the work was to investigate the potential of organosilicon compounds as modifiers of the mechanical and rheological properties of PLA, as well as to develop a new method for conducting mechanical property tests through innovative high-throughput technologies. Precise dosing methods were utilized to create PLA/silicone polymer blends with varying mass contents, allowing for continuous characterization of the produced blends. To automate bending tests and achieve comprehensive characterization of the blends, a self-created workstation setup has been used. The tensile properties of selected blend compositions were tested, and their ability to withstand dynamic loads was studied. The blends were characterized through various methods, including rheological (MFI), X-ray (XRD), spectroscopic (FTIR), and thermal properties analysis (TG, DSC, HDT), and they were evaluated using microscopic methods (MO, SEM) to examine their structures.</jats:p>